168 resultados para Solid substrate cultivation
Resumo:
Two recombinant baculoviruses were produced in order to obtain a bovine viral diarrhea virus (BVDV) immunogen: AcNPV/E2 expressing E2 glycoprotein, and AcNPV/E0E1E2 expressing the polyprotein region coding for the three structural proteins of BVDV (E0, E1, and E2). Mice were immunized with Sf9 cells infected with the recombinant baculoviruses in a water in oil formulation and the production of neutralizing antibodies was evaluated. Since E2 elicited higher neutralizing antibody titers than E0-E1-E2 polyprotein, it was selected to immunize cattle. Calves received two doses of recombinant E2 vaccine and were challenged with homologous BVDV 37 days later. The recombinant immunogen induced neutralizing titers which showed a mean value of 1.5 ± 0.27 on the day of challenge and reached a top value of 3.36 ± 0.36, 47 days later (84 days post-vaccination). On the other hand, sera from animals which received mock-infected Sf9 cells did not show neutralizing activity until 25 days post-challenge (62 days post-vaccination), suggesting that these antibodies were produced as a consequence of BVDV challenge. Even when no total protection was observed in cattle, in vitro viral neutralization assays revealed that the recombinant immunogen was able to induce neutralizing antibody synthesis against the homologous strain as well as against heterologous strains in a very efficient way.
Resumo:
The manner by which effects of simultaneous mutations combine to change enzymatic activity is not easily predictable because these effects are not always additive in a linear manner. Hence, the characterization of the effects of simultaneous mutations of amino acid residues that bind the substrate can make a significant contribution to the understanding of the substrate specificity of enzymes. In the β-glycosidase from Spodoptera frugiperda (Sfβgly), both residues Q39 and E451 interact with the substrate and this is essential for defining substrate specificity. Double mutants of Sfβgly (A451E39, S451E39 and S451N39) were prepared by site-directed mutagenesis, expressed in bacteria and purified using affinity chromatography. These enzymes were characterized using p-nitrophenyl β-galactoside and p-nitrophenyl β-fucoside as substrates. The k cat/Km ratio for single and double mutants of Sfβgly containing site-directed mutations at positions Q39 and E451 was used to demonstrate that the effect on the free energy of ES‡ (enzyme-transition state complex) of the double mutations (∆∆G‡xy) is not the sum of the effects resulting from the single mutations (∆∆G‡x and ∆∆G‡y). This difference in ∆∆G‡ indicates that the effects of the single mutations partially overlap. Hence, this common effect counts only once in ∆∆G‡xy. Crystallographic data on β-glycosidases reveal the presence of a bidentate hydrogen bond involving residues Q39 and E451 and the same hydroxyl group of the substrate. Therefore, both thermodynamic and crystallographic data suggest that residues Q39 and E451 exert a mutual influence on their respective interactions with the substrate.
Resumo:
Our group established a method to culture spheres under serum-free culture condition. However, the biological characteristics and the tumorigenicity of spheres are unknown. Here, we demonstrate that sphere cells expressed high levels of the putative colorectal cancer stem cell markers CD133 and CD44. The CD133-positive rates were 13.27 ± 5.62, 52.71 ± 16.97 and 16.47 ± 2.45% in sphere cells, regular Colo205 cells and differentiated sphere cells, respectively, while the CD44-positive rates were 62.92 ± 8.38, 79.06 ± 12.10 and 47.80 ± 2.5%, respectively, and the CD133/CD44-double-positive rates were 10.77 ± 4.96, 46.89 ± 19.17 and 12.41 ± 2.27%, respectively (P < 0.05). Cancer sphere cells formed crypt-like structures in 3-D culture. Moreover, cells from cancer spheres exhibited more tumorigenicity than regular Colo205 cells in a xenograft assay. The cancer sphere cells displayed much higher oncogenicity than regular Colo205 cells to initiate neoplasms, as assayed by H&E staining, Musashi-1 staining and electron microscopy. Our findings indicated that the sphere cells were enriched with cancer stem cells (CSCs), and exhibited more proliferation capacity, more differentiation potential and especially more tumorigenicity than regular Colo205 cells in vitro and in vivo. Further isolation and characterization of these CSCs may provide new insights for novel therapeutic targets and prognostic markers.
Resumo:
Ricinus communis L. is of great economic importance due to the oil extracted from its seeds. Castor oil has been used for pharmaceutical and industrial applications, as a lubricant or coating agent, as a component of plastic products, as a fungicide or in the synthesis of biodiesel fuels. After oil extraction, a castor cake with a large amount of protein is obtained. However, this by-product cannot be used as animal feed due to the presence of toxic (ricin) and allergenic (2S albumin) proteins. Here, we propose two processes for detoxification and allergen inactivation of the castor cake. In addition, we establish a biological test to detect ricin and validate these detoxification processes. In this test, Vero cells were treated with ricin, and cell death was assessed by cell counting and measurement of lactate dehydrogenase activity. The limit of detection of the Vero cell assay was 10 ng/mL using a concentration of 1.6 x 10(5) cells/well. Solid-state fermentation (SSF) and treatment with calcium compounds were used as cake detoxification processes. For SSF, Aspergillus niger was grown using a castor cake as a substrate, and this cake was analyzed after 24, 48, 72, and 96 h of SSF. Ricin was eliminated after 24 h of SSF treatment. The cake was treated with 4 or 8% Ca(OH)2 or CaO, and both the toxicity and the allergenic properties were entirely abolished. A by-product free of toxicity and allergens was obtained.
Resumo:
Germ cell tumors present contrasting biological and molecular features compared to many solid tumors, which may partially explain their unusual sensitivity to chemotherapy. Reduced DNA repair capacity and enhanced induction of apoptosis appear to be key factors in the sensitivity of germ cell tumors to cisplatin. Despite substantial cure rates, some patients relapse and subsequently die of their disease. Intensive doses of chemotherapy are used to counter mechanisms of drug resistance. So far, high-dose chemotherapy with hematopoietic stem cell support for solid tumors is used only in the setting of testicular germ cell tumors. In that indication, high-dose chemotherapy is given as the first or late salvage treatment for patients with either relapsed or progressive tumors after initial conventional salvage chemotherapy. High-dose chemotherapy is usually given as two or three sequential cycles using carboplatin and etoposide with or without ifosfamide. The administration of intensive therapy carries significant side effects and can only be efficiently and safely conducted in specialized referral centers to assure optimum patient care outcomes. In breast and ovarian cancer, most studies have demonstrated improvement in progression-free survival (PFS), but overall survival remained unchanged. Therefore, most of these approaches have been dropped. In germ cell tumors, clinical trials are currently investigating novel therapeutic combinations and active treatments. In particular, the integration of targeted therapies constitutes an important area of research for patients with a poor prognosis.
Resumo:
Although the metabolism of early bovine embryos has not been fully elucidated, several publications have addressed this important issue to improve culture conditions for cattle reproductive biotechnologies, with the ultimate goal of producing in vitro embryos similar in quality to those developing in vivo. Here, we review general aspects of bovine embryo metabolism in vitro and in vivo, and discuss the use of metabolic analysis of embryos produced in vitro to assess viability and predict a viable pregnancy after transference to the female tract.
Resumo:
In view of the interest in analyzing volatile compounds by SPME, the following five microfibers were tested, polydimethylsiloxane; polyacrylate; polydimethylsiloxane/divinylbenzene; carboxen/polydimethylsiloxane, and carbowax/divinylbenzene, to select the one which presents the best performance for the adsorption of the volatile compounds present in the headspace of acid lime juice samples. Sample stabilization time variations (30 and 60 minutes) were assessed as well the addition of NaCl to the samples. It was verified that the chromatogram with the most adsorbed volatile compounds was obtained with PDMS/DVB microfiber at 30 minutes and the addition of 0.2 g NaCl.
Resumo:
The microalgae biomass production from swine wastewater is a possible solution for the environmental impact generated by wastewater discharge into water sources. The biomass can be added to fish feed, which can be used in the formulation of meat products. This work addresses the adaptation of the microalgae Spirulina platensis (Arthrospira platensis) in swine wastewater and the study of the best dilution of the wastewater for maximum biomass production and for removal of Chemical Oxygen Demand (COD), ammonia and phosphorous to the microalgae. The cultivation of Spirulina platensis, strain Paracas presented maximum cellular concentrations and maximum specific growth rates in the wastewater concentration of 5.0 and 8.5%. The highest COD removals occurred with 26.5 and 30.0% of wastewater in the medium. The maximum removal of total phosphorous (41.6%), was with 8.5% of wastewater, which is related to the microalgae growth. The results of Spirulina culture in the swine wastewater demonstrated the possibility of using these microalgae for the COD and phosphorous removal and for biomass production.
Resumo:
The aim of the present study was the assessment of volatile organic compounds produced by Sporidiobolus salmonicolor (CBS 2636) using methyl and ethyl ricinoleate, ricinoleic acid and castor oil as precursors. The analysis of the volatile organic compounds was carried out using Head Space Solid Phase Micro-Extraction (HS - SPME). Factorial experimental design was used for investigating extraction conditions, verifying stirring rate (0-400 rpm), temperature (25-60 ºC), extraction time (10-30 minutes), and sample volume (2-3 mL). The identification of volatile organic compounds was carried out by Gas Chromatography with Mass Spectrum Detector (GC/MSD). The conditions that resulted in maximum extraction were: 60 ºC, 10 minutes extraction, no stirring, sample volume of 2.0 mL, and addition of saturated KCl (1:10 v/v). In the bio-production of volatile organic compounds the effect of stirring rate (120-200 rpm), temperature (23-33 ºC), pH (4.0-8.0), precursor concentration (0.02-0.1%), mannitol (0-6%), and asparagine concentration (0-0.2%) was investigated. The bio-production at 28 ºC, 160 rpm, pH 6,0 and with the addition of 0.02% ricinoleic acid to the medium yielded the highest production of VOCs, identified as 1,4-butanediol, 1,2,2-trimethylciclopropilamine, beta-ionone; 2,3-butanodione, pentanal, tetradecane, 2-isononenal, 4-octen-3-one, propanoic acid, and octadecane.
Resumo:
(E)-2-nonenal is considered an important off-flavor of beer, related to the flavor of beer staling. In this study, a new method for determination of (E)-2-nonenal in beer using headspace solid-phase microextraction and gas chromatographic coupled mass spectrometry (HS-SPME-GC-MS) was developed and applied in Brazilian beer samples. The extractions were carried out in CAR-PDMS (carboxen-polydimethylsiloxane) fiber and the best results were found with 15 minutes of equilibrium and 90 minutes of extraction at 50 °C. The method was linear in the range from 0.02 to 4.0 μg.L-1 with correlation coefficient of 0.9994. The limits of detection and quantification were 0.01 and 0.02 μg.L-1, respectively. 96.5% of recovery and 4% precision (RSD) were obtained in the fortification of beer samples with 2.0 μg.L-1 of (E)-2-nonenal. The developed method proved to be simple, efficient and highly sensitive to the determination of this analyte being easily applied in the quality control of the brewery. (E)-2-nonenal was found in all beer samples analyzed with levels between 0.17 and 0.42 μg.L-1.
Resumo:
The objective of the present work was to evaluate the nutritional composition of mushrooms produced in alternative substrates in agricultural and agro-industrial residues from the Amazon. C, N, pH, moisture, soluble solids, protein, lipids, total fibers, ashes, carbohydrates and energy were determined. Substrates were formulated from Simarouba amara Aubl. and Ochroma piramidale Cav. ex. Lam. Sawdust and from Bactris gasipaes Kunth and Saccharum officinarum stipe. Results showed that the nutritional composition of P. ostreatus varied according to the cultivation substrate and that it can be considered important food due to its nutritional characteristics such as: high protein content; metabolizable carbohydrates and fiber; and low lipids and calories contents.
Resumo:
Solid mixtures for refreshment are already totally integrated to the Brazilian consumers' daily routine, because of their quick preparation method, yield and reasonable price - quite lower if compared to 'ready-to-drink' products or products for prompt consumption, what makes them economically more accessible to low-income populations. Within such a context, the aim of this work was to evaluate the physicochemical and mineral composition, as well as the hygroscopic behavior of four different brands of solid mixture for mango refreshment. The BET, GAB, Oswim and Henderson mathematical models were built through the adjustment of experimental data to the isotherms of adsorption. Results from the physiochemical evaluation showed that the solid mixtures for refreshments are considerable sources of ascorbic acid and reductor sugar; and regarding mineral compounds, they are significant sources of calcium, sodium and potassium. It was also verified that the solid mixtures for refreshments of the four studied brands are considered highly hygroscopic.
Resumo:
The accumulation of exopolysaccharides (EPS) produced by microorganisms occurs in the presence of excess substrate and limiting conditions of elements that are essential to growth, such as nitrogen, phosphorus, sulfur, and magnesium. The presence of EPS produced by bacterial cells contributes to slime colonies formation in solid medium and increased viscosity in liquid medium. This paper proposes an alternative method for screening EPS-producing lactic acid bacteria using solid medium-containing discs of filter paper that are saturated with active cultures. The screening was carried out under different culture conditions varying the type of sugar, pH, and temperature. EPS production was visualized by the presence of mucoid colonies on the discs, which was confirmed by the formation of a precipitate when part of this colony was mixed with absolute alcohol. The established conditions for obtaining a high number of isolates producing EPS were 10% sucrose, pH 7.5 and 28 ºC. This method proved to be effective and economical because several strains could be tested on the same plate, with immediate confirmation.
Resumo:
Brazil is one of the three largest producers of fruits in the world, and among those fruit trees, the cashew tree stands out due to the high nutritional and commercial value of its products. During its fruit processing, there are losses in some compounds and few studies address this issue. Over the last decade the conventional system of food production has been substituted for the organic cultivation system, which is a promising alternative source of income given the global demand for healthy food. Therefore, this research aimed to characterize and quantify the prevalent fatty acids found in cashew nuts obtained from conventional and organic cultivation during various stages of processing. The prevalent fatty acids found were palmitic, linoleic, oleic, and stearic acid. The average of these fatty acids were 6.93 ± 0.55; 16.99 ± 0.61; 67.62 ± 1.00 and 8.42 ± 0.55 g/100 g, respectively. There was no reduction in the palmitic, oleic and stearic fatty acid contents during processing. Very little difference was observed between the nuts obtained from conventional and organic cultivation, indicating that the method of cultivation used has little or no influence on the content of cashew nut fatty acids.
Resumo:
The study and use of natural pigments in food industries have increased in recent years due to the toxicity presented by artificial pigments. Monascus ruber is a filamentous fungus that produces red, orange, and yellow pigments under different growing conditions. The growth of health food market has increased in parallel with the growth in biofuels production, such as biodiesel, which generates a concomitant increase in the production of glycerin that can be used in bioprocesses. The objective of this study was to use glycerin and glucose as substrates in the production of natural pigments in a bioreactor. The culture of Monascus ruber was carried out in a Bioflo III reactor with 4 L of working volume and pH, temperature, aeration, and agitation control. The highest pigment production was observed after 60 hours of fungal culture with 8.28 UA510 of red pigment. The pH range remained from 5.45 to 6.23 favoring the release of red pigment in the medium. This study shows the feasibility of the production of natural pigments by Monascus ruber in a bioreactor using a co-product of biodiesel without previous treatment as a substrate.