156 resultados para Reticulum stress
Resumo:
The aim of this study was to compare the effect of an intermittent intense aerobic exercise session and a resistance exercise session on blood cell counts and oxidative stress parameters in middle-aged women. Thirty-four women were selected and divided into three groups: RE group (performing 60 min of resistance exercises, N = 12), spinning group (performing 60 min of spinning, N = 12), and control group (not exercising regularly, N = 10). In both exercise groups, lymphocytes and monocytes decreased after 1-h recuperation (post-exercise) compared to immediately after exercise (P < 0.05). Immediately after exercise, in both exercised groups, a significant increase in TBARS (from 16.5 ± 2 to 25 ± 2 for the spinning group and from 18.6 ± 1 to 28.2 ± 3 nmol MDA/mL serum for the RE group) and protein carbonyl (from 1.0 ± 0.3 to 1.6 ± 0.2 for the spinning group and from 0.9 ± 0.2 to 1.5 ± 0.2 nmol/mg protein for the RE group) was observed (P < 0.05). A decrease in antioxidant activities (non-protein sulfhydryl, superoxide dismutase, catalase) was also demonstrated with a negative correlation between damage markers and antioxidant body defenses (P < 0.05). These results indicate that an acute bout of intermittent or anaerobic exercise induces immune suppression and increases the production of reactive oxygen species, causing oxidative stress in middle-aged and trained women. Furthermore, we demonstrated that trained women show improved antioxidant capacity and lower oxidative damage than sedentary ones, demonstrating the benefits of chronic regular physical activity.
Resumo:
The objective of the present study was to investigate the effects of eccentric training on the activity of mitochondrial respiratory chain enzymes, oxidative stress, muscle damage, and inflammation of skeletal muscle. Eighteen male mice (CF1) weighing 30-35 g were randomly divided into 3 groups (N = 6): untrained, trained eccentric running (16°; TER), and trained running (0°) (TR), and were submitted to an 8-week training program. TER increased muscle oxidative capacity (succinate dehydrogenase and complexes I and II) in a manner similar to TR, and TER did not decrease oxidative damage (xylenol and creatine phosphate) but increased antioxidant enzyme activity (superoxide dismutase and catalase) similar to TR. Muscle damage (creatine kinase) and inflammation (myeloperoxidase) were not reduced by TER. In conclusion, we suggest that TER improves mitochondrial function but does not reduce oxidative stress, muscle damage, or inflammation induced by eccentric contractions.
Resumo:
Neonatal handling induces several behavioral and neurochemical alterations in pups, including decreased responses to stress and reduced fear in new environments. However, there are few reports in the literature concerning the behavioral effects of this neonatal intervention on the dams during the postpartum period. Therefore, the aim of the current study was to determine if brief postpartum separation from pups has a persistent impact on the dam's stress response and behavior. Litters were divided into two neonatal groups: 1) non-handled and 2) handled [10 min/day, from postnatal day (PND) 1 to 10]. Weaning occurred at PND 21 when behavioral tasks started to be applied to the dams, including sweet food ingestion (PND 21), forced swimming test (PND 28), and locomotor response to a psychostimulant (PND 28). On postpartum day 40, plasma was collected at baseline for leptin assays and after 1 h of restraint for corticosterone assay. Regarding sweet food consumption, behavior during the forced swimming test or plasma leptin levels did not differ between dams briefly separated and non-separated from their pups during the postpartum period. On the other hand, both increased locomotion in response to diethylpropion and increased corticosterone secretion in response to acute stress were detected in dams briefly separated from their pups during the first 10 postnatal days. Taken together, these findings suggest that brief, repeated separations from the pups during the neonatal period persistently impact the behavior and induce signs of dopaminergic sensitization in the dam.
Resumo:
Gut-derived endotoxin and pathogenic bacteria have been proposed as important causative factors of morbidity and death during heat stroke. However, it is still unclear what kind of damage is induced by heat stress. In this study, the rat intestinal epithelial cell line (IEC-6) was treated with heat stress or a combination of heat stress and lipopolysaccharide (LPS). In addition, propofol, which plays an important role in anti-inflammation and organ protection, was applied to study its effects on cellular viability and apoptosis. Heat stress, LPS, or heat stress combined with LPS stimulation can all cause intestinal epithelial cell damage, including early apoptosis and subsequent necrosis. However, propofol can alleviate injuries caused by heat stress, LPS, or the combination of heat stress and LPS. Interestingly, propofol can only mitigate LPS-induced intestinal epithelial cell apoptosis, and has no protective role in heat-stress-induced apoptosis. This study developed a model that can mimic the intestinal heat stress environment. It demonstrates the effects on intestinal epithelial cell damage, and indicated that propofol could be used as a therapeutic drug for the treatment of heat-stress-induced intestinal injuries.
Resumo:
Excessive oxidative stress in pancreatic β cells, caused by glucose and fatty acids, is associated with the pathogenesis of type 2 diabetes. Mogrosides have shown antioxidant and antidiabetic activities in animal models of diabetes, but the underlying mechanisms remain unclear. This study evaluated the antioxidant effect of mogrosides on insulinoma cells under oxidative stress caused by palmitic acid, and investigated the underlying molecular mechanisms. Mouse insulinoma NIT-1 cells were cultured in medium containing 0.75 mM palmitic acid, mimicking oxidative stress. The effects of 1 mM mogrosides were determined with the dichlorodihydrofluorescein diacetate assay for intracellular reactive oxygen species (ROS) and FITC-Annexin V/PI assay for cell apoptosis. Expression of glucose transporter-2 (GLUT2) and pyruvate kinase was determined by semi-quantitative reverse-transcription polymerase chain reaction. Palmitic acid significantly increased intracellular ROS concentration 2-fold (P<0.05), and decreased expression of GLUT2 (by 60%, P<0.05) and pyruvate kinase (by 80%, P<0.05) mRNAs in NIT-1 cells. Compared with palmitic acid, co-treatment with 1 mM mogrosides for 48 h significantly reduced intracellular ROS concentration and restored mRNA expression levels of GLUT2 and pyruvate kinase. However, mogrosides did not reverse palmitic acid-induced apoptosis in NIT-1 cells. Our results indicate that mogrosides might exert their antioxidant effect by reducing intracellular ROS and regulating expression of genes involved in glucose metabolism. Further research is needed to achieve a better understanding of the signaling pathway involved in the antioxidant effect of mogrosides.
Resumo:
In the current literature, there is evidence that psychological factors can affect the incidence and progression of some cancers. Interleukin 6 (IL-6) is known to be elevated in individuals experiencing chronic stress and is also involved in oncogenesis and cancer progression. However, the precise mechanism of IL-6 induction by the stress-related hormone norepinephrine (NE) is not clear, and, furthermore, there are no reports about the effect of NE on IL-6 expression in gastric epithelial cells. In this study, we examined the effect of NE on IL-6 expression in immortalized human gastric epithelial cells (GES-1 cells). Using real-time PCR and enzyme-linked immunoassay, we demonstrated that NE can induce IL-6 mRNA and protein expression in GES-1 cells. The induction is through the β-adrenergic receptor-cAMP-protein kinase A pathway and mainly at the transcriptional level. Progressive 5′-deletions and site-directed mutagenesis of the parental construct show that, although activating-protein-1 (AP-1), cAMP-responsive element binding protein (CREB), CCAAT-enhancer binding protein-β (C/EBP-β), and nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) binding sites are all required in the basal transcription of IL-6, only AP-1 and CREB binding sites in the IL-6 promoter are required in NE-induced IL-6 expression. The results suggest that chronic stress may increase IL-6 secretion of human gastric epithelial cells, at least in part, by the stress-associated hormone norepinephrine, and provides basic data on stress and gastric cancer progression.