162 resultados para Macromolecular carriers
Resumo:
The characterization of proteins from Brucella spp, the causative agent of brucellosis, has been the subject of intensive research. We have described an 18-kDa cytoplasmic protein of Brucella abortus and shown the potential usefulness of this protein as an antigen for the serologic diagnosis of brucellosis. The amino acid sequence of the protein showed a low but significant homology with that of lumazine synthases. Lumazine is an intermediate product in bacterial riboflavin biosynthesis. The recombinant form of the 18-kDa protein (expressed in E. coli) folds like the native Brucella protein and has lumazine-synthase enzymatic activity. Three-dimensional analysis by X-ray crystallography of the homolog Bacillus subtilis lumazine synthase has revealed that the enzyme forms an icosahedral capsid. Recombinant lumazine synthase from B. abortus was crystallized, diffracted X rays to 2.7-Å resolution at room temperature, and the structure successfully solved by molecular replacement procedures. The macromolecular assembly of the enzyme differs from that of the enzyme from B. subtilis. The Brucella enzyme remains pentameric (90 kDa) in its crystallographic form. Nonetheless, the active sites of the two enzymes are virtually identical at the structural level, indicating that inhibitors of these enzymes could be viable pharmaceuticals across a broad species range. We describe the structural reasons for the differences in their quaternary arrangement and also discuss the potential use of this protein as a target for the development of acellular vaccines.
Resumo:
Seven unrelated patients with hemoglobin (Hb) H disease and 27 individuals with alpha-chain structural alterations were studied to identify the alpha-globin gene mutations present in the population of Southeast Brazil. The -alpha3.7, --MED and -(alpha)20.5 deletions were investigated by PCR, whereas non-deletional alpha-thalassemia (alphaHphalpha, alphaNcoIalpha, aaNcoI, alphaIcalpha and alphaTSaudialpha) was screened with restriction enzymes and by nested PCR. Structural alterations were identified by direct DNA sequencing. Of the seven patients with Hb H disease, all of Italian descent, two had the -(alpha)20.5/-alpha3.7 genotype, one had the --MED/-alpha3.7 genotype, one had the --MED/alphaHphalpha genotype and three showed interaction of the -alpha3.7 deletion with an unusual, unidentified form of non-deletional alpha-thalassemia [-alpha3.7/(aa)T]. Among the 27 patients with structural alterations, 15 (of Italian descent) had Hb Hasharon (alpha47Asp->His) associated with the -alpha3.7 deletion, 4 (of Italian descent) were heterozygous for Hb J-Rovigo (alpha53Ala->Asp), 4 (3 Blacks and 1 Caucasian) were heterozygous for Hb Stanleyville-II (alpha78Asn->Lys) associated with the alpha+-thalassemia, 1 (Black) was heterozygous for Hb G-Pest (alpha74Asp->Asn), 1 (Caucasian) was heterozygous for Hb Kurosaki (alpha7Lys->Glu), 1 (Caucasian) was heterozygous for Hb Westmead (alpha122His->Gln), and 1 (Caucasian) was the carrier of a novel silent variant (Hb Campinas, alpha26Ala->Val). Most of the mutations found reflected the Mediterranean and African origins of the population. Hbs G-Pest and Kurosaki, very rare, and Hb Westmead, common in southern China, were initially described in individuals of ethnic origin differing from those of the carriers reported in the present study and are the first cases to be reported in the Brazilian population.
Resumo:
This is a review of the research undertaken since 1971 on the behavior and physiological ecology of sloths. The animals exhibit numerous fascinating features. Sloth hair is extremely specialized for a wet tropical environment and contains symbiotic algae. Activity shows circadian and seasonal variation. Nutrients derived from the food, particularly in Bradypus, only barely match the requirements for energy expenditure. Sloths are hosts to a fascinating array of commensal and parasitic arthropods and are carriers of various arthropod-borne viruses. Sloths are known reservoirs of the flagellate protozoan which causes leishmaniasis in humans, and may also carry trypanosomes and the protozoan Pneumocystis carinii.
Resumo:
We describe the clinical and molecular characteristics of two unrelated Brazilian families with an association of the Sicilian form of (dß)º-thalassemia with hemoglobin S and ß-thalassemia. Direct sequencing of the ß-globin gene showed only the hemoglobin S mutation in patient 1 and the ß-thalassemia IVS1-110 in patient 2. The other allele was deleted in both patients and PCR of DNA samples of the breakpoint region of both patients showed a band of approximately 1,150 bp, expected to be observed in the DNA of carriers of Sicilian (dß)º-thalassemia. The nucleotide sequence of this fragment confirmed the Sicilian deletion. There are few reports concerning the Hb S/(dß)º-thalassemia association and patient 2 is the first reported case of Sicilian type of (dß)º-thalassemia in association with ß-thalassemia documented at the molecular level.
Resumo:
Homozygous sickle cell disease (SCD) has a wide spectrum of clinical manifestations. In Brazil, the main cause of death of individuals with SCD is recurrent infection. The CCR5delta32 allele, which confers relative resistance to macrophage-tropic HIV virus infection, probably has reached its frequency and world distribution due to other pathogens that target macrophage in European populations. In the present investigation a relatively higher prevalence (5.1%) of the CCR5delta32 allele was identified, by PCR amplification using specific primers, in 79 SCD patients when compared to healthy controls (1.3%) with the same ethnic background (Afro-Brazilians). Based on a hypothesis that considers SCD as a chronic inflammatory condition, and since the CCR5 chemokine receptor is involved in directing a Th1-type immune response, we suggest that a Th1/Th2 balance can influence the morbidity of SCD. If the presence of the null CCR5delta32 allele results in a reduction of the chronic inflammation state present in SCD patients, this could lead to differential survival of SCD individuals who are carriers of the CCR5delta32 allele. This differential survival could be due to the development of less severe infections and consequently reduced or less severe vaso-occlusive crises.
Resumo:
Different from most mammalian species, the optic nerve of the rabbit eye is initially formed inside the retina where myelination of the axons of the ganglion cells starts and vascularization occurs. Astrocytes are confined to these regions. The aforementioned nerve fibers known as medullated nerve fibers form two bundles that may be identified with the naked eye. The blood vessels run on the inner surface of these nerve fiber bundles (epivascularization) and, accordingly, the accompanying astrocytes lie mostly facing the vitreous body from which they are separated only by the inner limiting membrane of the retina. The arrangement of the astrocytes around blood vessels leads to the formation of structures known as glial tufts. Fragments (N = 3) or whole pieces (N = 3) of the medullated nerve fiber region of three-month-old male rabbits (Orictolagus cuniculus) were fixed in glutaraldehyde followed by osmium tetroxide, and their thin sections were examined with a transmission electron microscope. Randomly located discontinuities (up to a few micrometers long) of the basement membrane of the inner limiting membrane of the retina were observed in the glial tufts. As a consequence, a direct contact between the astrocyte plasma membrane and vitreous elements was demonstrated, making possible functional interactions such as macromolecular exchanges between this glial cell type and the components of the vitreous body.
Resumo:
The photogeneration of nitric oxide (NO) using laser flash photolysis was investigated for S-nitroso-glutathione (GSNO) and S-nitroso-N-acetylcysteine (NacySNO) at pH 6.4 (PBS/HCl) and 7.4 (PBS). Irradiation of S-nitrosothiol with light (lambda = 355 nm followed by absorption spectroscopy) resulted in the homolytic decomposition of NacySNO and GSNO to generate radicals (GS· and NacyS·) and NO. The release of NO from donor compounds measured with an ISO-Nometer apparatus was larger at pH 7.4 than pH 6.4. NacySNO was also incorporated into dipalmitoyl-phosphatidylcholine liposomes in the presence and absence of zinc phthalocyanine (ZnPC), a well-known photosensitizer useful for photodynamic therapy. Liposomes are usually used as carriers for hydrophobic compounds such as ZnPC. Inclusion of ZnPC resulted in a decrease in NO liberation in liposomal medium. However, there was a synergistic action of both photosensitizers and S-nitrosothiols resulting in the formation of other reactive species such as peroxynitrite, which is a potent oxidizing agent. These data show that NO release depends on pH and the medium, as well as on the laser energy applied to the system. Changes in the absorption spectrum were monitored as a function of light exposure.
Resumo:
Integrins play crucial roles in cell adhesion, migration, and signaling by providing transmembrane links between the extracellular matrix and the cytoskeleton. Integrins cluster in macromolecular complexes to generate cell-matrix adhesions such as focal adhesions. In this mini-review, we compare certain integrin-based biological responses and signaling during cell interactions with standard 2D cell culture versus 3D matrices. Besides responding to the composition of the matrix, cells sense and react to physical properties that include three-dimensionality and rigidity. In routine cell culture, fibroblasts and mesenchymal cells appear to use focal adhesions as anchors. They then use intracellular actomyosin contractility and dynamic, directional integrin movements to stretch cell-surface fibronectin and to generate characteristic long fibrils of fibronectin in "fibrillar adhesions". Some cells in culture proceed to produce dense, three-dimensional matrices similar to in vivo matrix, as opposed to the flat, rigid, two-dimensional surfaces habitually used for cell culture. Cells within such more natural 3D matrices form a distinctive class of adhesion termed "3D-matrix adhesions". These 3D adhesions show distinctive morphology and molecular composition. Their formation is heavily dependent on interactions between integrin alpha5ß1 and fibronectin. Cells adhere much more rapidly to 3D matrices. They also show more rapid morphological changes, migration, and proliferation compared to most 2D matrices or 3D collagen gels. Particularly notable are low levels of tyrosine phosphorylation of focal adhesion kinase and moderate increases in activated mitogen-activated protein kinase. These findings underscore the importance of the dimensionality and dynamics of matrix substrates in cellular responses to the extracellular matrix.
Resumo:
The uncoupling protein UCP3 belongs to a family of mitochondrial carriers located in the inner mitochondrial membrane of certain cell types. It is expressed almost exclusively at high levels in skeletal muscle and its physiological role has not been fully determined in this tissue. In the present study we have addressed the possible interaction between a hypercaloric diet and thyroid hormone (T3), which are strong stimulators of UCP3 gene expression in skeletal muscle. Male Wistar rats weighing 180 ± 20 g were rendered hypothyroid by thyroidectomy and the addition of methimazole (0.05%; w/v) to drinking water after surgery. The rats were fed a hypercaloric cafeteria diet (68% carbohydrates, 13% protein and 18% lipids) for 10 days and sacrificed by decapitation. Subsequently, the gastrocnemius muscle was dissected, total RNA was isolated with Trizol and UCP3 gene expression was determined by Northern blotting using a specific probe. Statistical analysis was performed by one-way analysis of variance (ANOVA) followed by the Student-Newman-Keuls post-test. Skeletal muscle UCP3 gene expression was decreased by 60% in hypothyroid rats and UCP3 mRNA expression was increased 70% in euthyroid cafeteria-fed rats compared to euthyroid chow-fed animals, confirming previous studies. Interestingly, the cafeteria diet was unable to stimulate UCP3 gene expression in hypothyroid animals (40% lower as compared to euthyroid cafeteria-fed animals). The results show that a hypercaloric diet is a strong stimulator of UCP3 gene expression in skeletal muscle and requires T3 for an adequate action.
Resumo:
The expression of components present in the cartilaginous extracellular matrix is related to development, gender, and genotype, as well as to the biomechanical properties of each type of cartilage. In the present study, we analyzed small proteoglycans and glycosaminoglycans present in different cartilages of the chicken wing after extraction with guanidine hydrochloride or papain. Quantitative analysis of glycosaminoglycans showed a larger amount in humeral cartilage (around 200 mg/g tissue) than in articular cartilage of the radius and ulna, with 138 and 80 mg/g tissue, respectively. Non-collagenous proteins isolated were predominantly from cartilage in the proximal regions of the humerus and radius. D4 fractions obtained by ultracentrifugation were separated by DEAE-Sephacel and Octyl-Sepharose chromatography and analyzed by SDS-PAGE. Two bands of 57 and 70-90 kDa were observed for all samples treated with ß-mercaptoethanol. Immunoblotting of these proteins was positive for the small proteoglycans fibromodulin and decorin, respectively. Apparently, the 57-kDa protein is present in macromolecular complexes of 160 and 200 kDa. Chondroitin sulfate was detected in all regions. HPLC analysis of the products formed by chondroitinase AC and ABC digestion mainly revealed ß-D-glucuronic acid and N-acetyl ß-D-galactosamine residues. The 4-sulfation/6-sulfation ratio was close to 3, except for the proximal cartilage of the radius (2.5). These results suggest functional differences between the scapula-humerus, humerus-ulna, and humerus-radius joints of the chicken wing. This study contributes to the understanding of the physiology of cartilage and joints of birds under different types of mechanical stress.
Resumo:
Vaccine approaches to infectious diseases are widely applied and appreciated. Amongst them, vectors based on recombinant viruses have shown great promise and play an important role in the development of new vaccines. Many viruses have been investigated for their ability to express proteins from foreign pathogens and induce specific immunological responses against these antigens in vivo. Generally, gene-based vaccines can stimulate potent humoral and cellular immune responses and viral vectors might be an effective strategy for both the delivery of antigen-encoding genes and the facilitation and enhancement of antigen presentation. In order to be utilized as a vaccine carrier, the ideal viral vector should be safe and enable efficient presentation of required pathogen-specific antigens to the immune system. It should also exhibit low intrinsic immunogenicity to allow for its re-administration in order to boost relevant specific immune responses. Furthermore, the vector system must meet criteria that enable its production on a large-scale basis. Several viral vaccine vectors have thus emerged to date, all of them having relative advantages and limits depending on the proposed application, and thus far none of them have proven to be ideal vaccine carriers. In this review we describe the potential, as well as some of the foreseeable obstacles associated with viral vaccine vectors and their use in preventive medicine.
Resumo:
Genetic studies have suggested that polymorphisms of genes coding for apolipoproteins are significant determinants of serum lipoprotein and lipid levels in adults. However, only a few studies have investigated the association of these polymorphisms in children. Therefore, in the present investigation we studied the distribution of APOA1 -75 G>A, +83 C>T, APOC3 -482 C>T, -455 T>C and 3238 C>G, and APOA4 Q360H and T347S polymorphisms and their influence on plasma lipoprotein levels in children from a Brazilian northeastern admixed population. The seven polymorphic sites were genotyped in 414 children aged 5 to 15 years (mean 8.9 ± 2.9). The genotypes of the seven polymorphic sites were assessed by PCR-RFLP methods. The frequencies of the less common alleles were, in general, intermediate among parental populations, as expected. Strong linkage disequilibrium was detected between polymorphisms at the APOA1, APOC3 and APOA4 loci in this admixed population sample. Overall the genotype effects seen in adults were weaker or absent in children. The APOC3/-455 and APOA4 T347S variants showed significant effects on HDL cholesterol in girls (P = 0.033 and P = 0.016, respectively). Significantly higher plasma total (P = 0.003) and LDL cholesterol (P = 0.004) levels were observed in boys who were carriers of the 3238G allele at the APOC3/3238 C>G site. These results disclosed an overall absence of associations between these polymorphisms and lipids in children. This finding is not unexpected because expression of the effect of these polymorphisms might depend on the interaction with environmental variables both internal and external to the individual.