171 resultados para MECHANICAL INFLAMMATORY HYPERNOCICEPTION
Resumo:
Wear particles are phagocytosed by macrophages and other inflammatory cells, resulting in cellular activation and release of proinflammatory factors, which cause periprosthetic osteolysis and subsequent aseptic loosening, the most common causes of total joint arthroplasty failure. During this pathological process, tumor necrosis factor-alpha (TNF-α) plays an important role in wear-particle-induced osteolysis. In this study, recombination adenovirus (Ad) vectors carrying both target genes [TNF-α small interfering RNA (TNF-α-siRNA) and bone morphogenetic protein 2 (BMP-2)] were synthesized and transfected into RAW264.7 macrophages and pro-osteoblastic MC3T3-E1 cells, respectively. The target gene BMP-2, expressed on pro-osteoblastic MC3T3-E1 cells and silenced by the TNF-α gene on cells, was treated with titanium (Ti) particles that were assessed by real-time PCR and Western blot. We showed that recombinant adenovirus (Ad-siTNFα-BMP-2) can induce osteoblast differentiation when treated with conditioned medium (CM) containing RAW264.7 macrophages challenged with a combination of Ti particles and Ad-siTNFα-BMP-2 (Ti-ad CM) assessed by alkaline phosphatase activity. The receptor activator of nuclear factor-κB ligand was downregulated in pro-osteoblastic MC3T3-E1 cells treated with Ti-ad CM in comparison with conditioned medium of RAW264.7 macrophages challenged with Ti particles (Ti CM). We suggest that Ad-siTNFα-BMP-2 induced osteoblast differentiation and inhibited osteoclastogenesis on a cell model of a Ti particle-induced inflammatory response, which may provide a novel approach for the treatment of periprosthetic osteolysis.
Resumo:
Orofacial pain is a prevalent symptom in modern society. Some musculoskeletal orofacial pain is caused by temporomandibular disorders (TMDs). This condition has a multi-factorial etiology, including emotional factors and alteration of the masticator muscle and temporomandibular joints (TMJs). TMJ inflammation is considered to be a cause of pain in patients with TMD. Extracellular proteolytic enzymes, specifically the matrix metalloproteinases (MMPs), have been shown to modulate inflammation and pain. The purpose of this investigation was to determine whether the expression and level of gelatinolytic activity of MMP-2 and MMP-9 in the trigeminal ganglion are altered during different stages of temporomandibular inflammation, as determined by gelatin zymography. This study also evaluated whether mechanical allodynia and orofacial hyperalgesia, induced by the injection of complete Freund's adjuvant into the TMJ capsule, were altered by an MMP inhibitor (doxycycline, DOX). TMJ inflammation was measured by plasma extravasation in the periarticular tissue (Evans blue test) and infiltration of polymorphonuclear neutrophils into the synovial fluid (myeloperoxidase enzyme quantification). MMP expression in the trigeminal ganglion was shown to vary during the phases of the inflammatory process. MMP-9 regulated the early phase and MMP-2 participated in the late phase of this process. Furthermore, increases in plasma extravasation in periarticular tissue and myeloperoxidase activity in the joint tissue, which occurred throughout the inflammation process, were diminished by treatment with DOX, a nonspecific MMP inhibitor. Additionally, the increases of mechanical allodynia and orofacial hyperalgesia were attenuated by the same treatment.
Resumo:
Pain is a common symptom in patients with cancer, including those with head and neck cancer (HNC). While studies suggest an association between chronic inflammation and pain, levels of inflammatory cytokines, such as C-reactive protein (CRP) and tumor necrosis factor-alpha (TNF-α), have not been correlated with pain in HNC patients who are not currently undergoing anticancer treatment. The purpose of this study was to examine the relationship between these inflammatory markers and perceived pain in HNC patients prior to anticancer therapy. The study group consisted of 127 HNC patients and 9 healthy controls. Pain was assessed using the Brief Pain Inventory (BPI), and serum levels of CRP and TNF-α were determined using the particle-enhanced turbidimetric immunoassay (PETIA) and ELISA techniques, respectively. Patients experiencing pain had significantly higher levels of CRP (P<0.01) and TNF-α (P<0.05) compared with controls and with patients reporting no pain. There were significantly positive associations between pain, CRP level, and tumor stage. This is the first study to report a positive association between perceived pain and CRP in HNC patients at the time of diagnosis. The current findings suggest important associations between pain and inflammatory processes in HNC patients, with potential implications for future treatment strategies.
Resumo:
Inflammatory bowel disease (IBD), which includes Crohn's disease (CD) and ulcerative colitis (UC), is a chronic disorder that affects thousands of people around the world. These diseases are characterized by exacerbated uncontrolled intestinal inflammation that leads to poor quality of life in affected patients. Although the exact cause of IBD still remains unknown, compelling evidence suggests that the interplay among immune deregulation, environmental factors, and genetic polymorphisms contributes to the multifactorial nature of the disease. Therefore, in this review we present classical and novel findings regarding IBD etiopathogenesis. Considering the genetic causes of the diseases, alterations in about 100 genes or allelic variants, most of them in components of the immune system, have been related to IBD susceptibility. Dysbiosis of the intestinal microbiota also plays a role in the initiation or perpetuation of gut inflammation, which develops under altered or impaired immune responses. In this context, unbalanced innate and especially adaptive immunity has been considered one of the major contributing factors to IBD development, with the involvement of the Th1, Th2, and Th17 effector population in addition to impaired regulatory responses in CD or UC. Finally, an understanding of the interplay among pathogenic triggers of IBD will improve knowledge about the immunological mechanisms of gut inflammation, thus providing novel tools for IBD control.
Resumo:
Chronic granulomatous disease is a primary immunodeficiency caused by mutations in the genes encoding subunits of the phagocytic NADPH oxidase system. Patients can present with severe, recurrent infections and noninfectious conditions. Among the latter, inflammatory manifestations are predominant, especially granulomas and colitis. In this article, we systematically review the possible mechanisms of hyperinflammation in this rare primary immunodeficiency condition and their correlations with clinical aspects.
Resumo:
Deep venous thrombosis (DVT) is a common surgical complication in cancer patients and evidence that inflammation plays a role in the occurrence of DVT is increasing. We studied a population of cancer patients with abdominal malignancies with the aim of investigating whether the levels of circulating inflammatory cytokines were associated with postoperative DVT, and to determine the levels in DVT diagnoses. The serum levels of C-reactive protein (CRP), interleukins (IL)-6 and IL-10, nuclear transcription factor-κB (NF-κB) and E-selectin (E-Sel) were determined in 120 individuals, who were divided into 3 groups: healthy controls, patients with and patients without DVT after surgery for an abdominal malignancy. Data were analyzed by ANOVA, Dunnet's T3 test, chi-square test, and univariate and multivariate logistic regression as needed. The CRP, IL-6, NF-κB, and E-Sel levels in patients with DVT were significantly higher than those in the other groups (P<0.05). The IL-10 level was higher in patients with DVT than in controls but lower than in patients without DVT. Univariate analysis revealed that CRP, IL-6, NF-κB, and E-Sel were statistically associated with the risk of DVT (OR=1.98, P=0.002; OR=1.17, P=0.000; OR=1.03, P=0.042; and OR=1.38, P=0.003; respectively), whereas IL-10 had a protective effect (OR=0.94, P=0.011). Multivariate analysis showed that E-Sel was an independent risk factor (OR=1.41, P=0.000). Thus, this study indicated that an increased serum level of E-Sel was associated with increased DVT risk in postoperative patients with abdominal malignancy, indicating that E-Sel may be a useful predictor of diagnosis of DVT.
Resumo:
Crohn's disease (CD) and ulcerative colitis (UC) are intestinal disorders that comprise the inflammatory bowel diseases (IBD). These disorders have a significant effect on the quality of life of affected patients and the increasing number of IBD cases worldwide is a growing concern. Because of the overall burden of IBD and its multifactorial etiology, efforts have been made to improve the medical management of these inflammatory conditions. The classical therapeutic strategies aim to control the exacerbated host immune response with aminosalicylates, antibiotics, corticosteroids, thiopurines, methotrexate and anti-tumor necrosis factor (TNF) biological agents. Although successful in the treatment of several CD or UC conditions, these drugs have limited effectiveness, and variable responses may culminate in unpredictable outcomes. The ideal therapy should reduce inflammation without inducing immunosuppression, and remains a challenge to health care personnel. Recently, a number of additional approaches to IBD therapy, such as new target molecules for biological agents and cellular therapy, have shown promising results. A deeper understanding of IBD pathogenesis and the availability of novel therapies are needed to improve therapeutic success. This review describes the overall key features of therapies currently employed in clinical practice as well as novel and future alternative IBD treatment methods.
Resumo:
It is currently accepted that superoxide anion (O2•−) is an important mediator in pain and inflammation. The role of superoxide anion in pain and inflammation has been mainly determined indirectly by modulating its production and inactivation. Direct evidence using potassium superoxide (KO2), a superoxide anion donor, demonstrated that it induced thermal hyperalgesia, as assessed by the Hargreaves method. However, it remains to be determined whether KO2 is capable of inducing other inflammatory and nociceptive responses attributed to superoxide anion. Therefore, in the present study, we investigated the nociceptive and inflammatory effects of KO2. The KO2-induced inflammatory responses evaluated in mice were: mechanical hyperalgesia (electronic version of von Frey filaments), thermal hyperalgesia (hot plate), edema (caliper rule), myeloperoxidase activity (colorimetric assay), overt pain-like behaviors (flinches, time spent licking and writhing score), leukocyte recruitment, oxidative stress, and cyclooxygenase-2 mRNA expression (quantitative PCR). Administration of KO2 induced mechanical hyperalgesia, thermal hyperalgesia, paw edema, leukocyte recruitment, the writhing response, paw flinching, and paw licking in a dose-dependent manner. KO2 also induced time-dependent cyclooxygenase-2 mRNA expression in the paw skin. The nociceptive, inflammatory, and oxidative stress components of KO2-induced responses were responsive to morphine (analgesic opioid), quercetin (antioxidant flavonoid), and/or celecoxib (anti-inflammatory cyclooxygenase-2 inhibitor) treatment. In conclusion, the well-established superoxide anion donor KO2 is a valuable tool for studying the mechanisms and pharmacological susceptibilities of superoxide anion-triggered nociceptive and inflammatory responses ranging from mechanical and thermal hyperalgesia to overt pain-like behaviors, edema, and leukocyte recruitment.
IL-6 and TNF-α serum levels are associated with early death in community-acquired pneumonia patients
Resumo:
Community-acquired pneumonia (CAP) is amongst the leading causes of death worldwide. As inflammatory markers, cytokines can predict outcomes, if interpreted together with clinical data and scoring systems such as CURB-65, CRB, and Acute Physiology and Chronic Health Evaluation II (APACHE II). The aim of this study was to determine the impact of inflammatory biomarkers on the early mortality of hospitalized CAP patients. Twenty-seven CAP patients needing hospitalization were enrolled for the study and samples of interleukin-1 (IL-1) and interleukin-6 (IL-6), tumor necrosis factor alpha (TNF-α), C-reactive protein (CRP), and homocystein were collected at the time of admission (day 1) as well as on the seventh day of the treatment. There was a significant reduction in the levels of IL-6 between the first and the second collections. Median IL-6 values decreased from 24 pg/mL (day 1) to 8 pg/mL (day 7) (P=0.016). The median levels of TNF-α were higher in patients: i) with acute kidney injury (AKI) (P=0.045), ii) requiring mechanical ventilation (P=0.040), iii) with short hospital stays (P=0.009), iv) admitted to the intensive care unit (ICU) (P=0.040), v) who died early (P=0.003), and vi) with worse CRB scores (P=0.013). In summary, IL-6 and TNF-α levels were associated with early mortality of CAP patients. Longer admission levels demonstrated greater likelihood of early death and overall mortality, necessity of mechanical ventilation, and AKI.
Resumo:
This paper reports on the in vitro antibacterial and in vivo anti-inflammatory properties of a hydroethanolic extract of the aerial parts of Gochnatia pulchra (HEGP). It also describes the antibacterial activity of HEGP fractions and of the isolated compounds genkwanin, scutellarin, apigenin, and 3,5-O-dicaffeoylquinic acid, as evaluated by a broth microdilution method. While HEGP and its fractions did not provide promising results, the isolated compounds exhibited pronounced antibacterial activity. The most sensitive microorganism was Streptococcus pyogenes, with minimum inhibitory concentration (MIC) values of 100, 50 and 25 µg/mL for genkwanin and the flavonoids apigenin and scutellarin, respectively. Genkwanin produced an MIC value of 25 µg/mL against Enterococcus faecalis. A paw edema model in rats and a pleurisy inflammation model in mice aided investigation of the anti-inflammatory effects of HEGP. This study also evaluated the ability of HEGP to modulate carrageenan-induced interleukin-1 beta (IL-1β), tumor necrosis factor alpha (TNF-α), and monocyte chemoattractant protein-1 (MCP-1) production. Orally administered HEGP (250 and 500 mg/kg) inhibited carrageenan-induced paw edema. Regarding carrageenan-induced pleurisy, HEGP at 50, 100, and 250 mg/kg diminished leukocyte migration by 71.43%, 69.24%, and 73.34% (P<0.05), respectively. HEGP suppressed IL-1β and MCP-1 production by 55% and 50% at 50 mg/kg (P<0.05) and 60% and 25% at 100 mg/kg (P<0.05), respectively. HEGP abated TNF-α production by macrophages by 6.6%, 33.3%, and 53.3% at 100, 250, and 500 mg/kg (P<0.05), respectively. HEGP probably exerts anti-inflammatory effects by inhibiting production of the pro-inflammatory cytokines TNF-α, IL-1β, and MCP-1.
Resumo:
Hypertension is characterized by a pro-inflammatory status, including redox imbalance and increased levels of pro-inflammatory cytokines, which may be exacerbated after heat exposure. However, the effects of heat exposure, specifically in individuals with inflammatory chronic diseases such as hypertension, are complex and not well understood. This study compared the effects of heat exposure on plasma cytokine levels and redox status parameters in 8 hypertensive (H) and 8 normotensive (N) subjects (age: 46.5±1.3 and 45.6±1.4 years old, body mass index: 25.8±0.8 and 25.6±0.6 kg/m2, mean arterial pressure: 98.0±2.8 and 86.0±2.3 mmHg, respectively). They remained at rest in a sitting position for 10 min in a thermoneutral environment (22°C) followed by 30 min in a heated environmental chamber (38°C and 60% relative humidity). Blood samples were collected before and after heat exposure. Plasma cytokine levels were measured using sandwich ELISA kits. Plasma redox status was determined by thiobarbituric acid reactive substances (TBARS) levels and ferric reducing ability of plasma (FRAP). Hypertensive subjects showed higher plasma levels of IL-10 at baseline (P<0.05), although levels of this cytokine were similar between groups after heat exposure. Moreover, after heat exposure, hypertensive individuals showed higher plasma levels of soluble TNF receptor (sTNFR1) and lower TBARS (P<0.01) and FRAP (P<0.05) levels. Controlled hypertensive subjects, who use angiotensin-converting-enzyme inhibitor (ACE inhibitors), present an anti-inflammatory status and balanced redox status. Nevertheless, exposure to a heat stress condition seems to cause an imbalance in the redox status and an unregulated inflammatory response.
Resumo:
Cardiopulmonary bypass (CPB) with extracorporeal circulation produces changes in the immune system accompanied by an increase in proinflammatory cytokines and a decrease in anti-inflammatory cytokines. We hypothesize that dexmedetomidine (DEX) as an anesthetic adjuvant modulates the inflammatory response after coronary artery bypass graft surgery with mini-CPB. In a prospective, randomized, blind study, 12 patients (4 females and 8 males, age range 42-72) were assigned to DEX group and compared with a conventional total intravenous anesthesia (TIVA) group of 11 patients (4 females and 7 males). The endpoints used to assess inflammatory and biochemical responses to mini-CPB were plasma interleukin (IL)-1, IL-6, IL-10, interferon (INF)-γ, tumor necrosis factor (TNF)-α, C-reactive protein, creatine phosphokinase, creatine phosphokinase-MB, cardiac troponin I, cortisol, and glucose levels. These variables were determined before anesthesia, 90 min after beginning CPB, 5 h after beginning CPB, and 24 h after the end of surgery. Endpoints of oxidative stress, including thiobarbituric acid reactive species and delta-aminolevulinate dehydratase activity in erythrocytes were also determined. DEX+TIVA use was associated with a significant reduction in IL-1, IL-6, TNF-α, and INF-γ (P<0.0001) levels compared with TIVA (two-way ANOVA). In contrast, the surgery-induced increase in thiobarbituric acid reactive species was higher in the DEX+TIVA group than in the TIVA group (P<0.01; two-way ANOVA). Delta-aminolevulinate dehydratase activity was decreased after CPB (P<0.001), but there was no difference between the two groups. DEX as an adjuvant in anesthesia reduced circulating IL-1, IL-6, TNF-α, and INF-γ levels after mini-CPB. These findings indicate an interesting anti-inflammatory effect of DEX, which should be studied in different types of surgical interventions.
Resumo:
Angiogenesis and lymphangiogenesis are thought to play a role in the pathogenesis of inflammatory bowel diseases (IBD). However, it is not understood if inflammatory lymphangiogenesis is a pathological consequence or a productive attempt to resolve the inflammation. This study investigated the effect of lymphangiogenesis on intestinal inflammation by overexpressing a lymphangiogenesis factor, vascular endothelial growth factor-C (VEGF-C), in a mouse model of acute colitis. Forty eight-week-old female C57BL/6 mice were treated with recombinant adenovirus overexpressing VEGF-C or with recombinant VEGF-C156S protein. Acute colitis was then established by exposing the mice to 5% dextran sodium sulfate (DSS) for 7 days. Mice were evaluated for disease activity index (DAI), colonic inflammatory changes, colon edema, microvessel density, lymphatic vessel density (LVD), and VEGFR-3mRNA expression in colon tissue. When acute colitis was induced in mice overexpressing VEGF-C, there was a significant increase in colonic epithelial damage, inflammatory edema, microvessel density, and neutrophil infiltration compared to control mice. These mice also exhibited increased lymphatic vessel density (73.0±3.9 vs 38.2±1.9, P<0.001) and lymphatic vessel size (1974.6±104.3 vs 1639.0±91.5, P<0.001) compared to control mice. Additionally, the expression of VEGFR-3 mRNA was significantly upregulated in VEGF-C156S mice compared to DSS-treated mice after induction of colitis (42.0±1.4 vs 3.5±0.4, P<0.001). Stimulation of lymphangiogenesis by VEGF-C during acute colitis promoted inflammatory lymphangiogenesis in the colon and aggravated intestinal inflammation. Inflammatory lymphangiogenesis may have pleiotropic effects at different stages of IBD.
Resumo:
A preliminary analysis by GC-MS comparing the mass spectrum of the compounds with the Wiley 275 L mass spectral data base was used to identify the fatty acids and mainly, some volatile compounds responsible for the flavor of the roasted coffee oil. The oil was obtained by mechanical expelling of Brazilian beans (Coffea arabica) roasted at 238ºC for 10 minutes. Different sample preparation methodologies such as headspace, adsorbent suction trapping and esterification were used. It was possible to identify pyrazines, pyridines, furan derivatives and other compounds not reported in the literature.
Resumo:
In this work, the structural, mechanical, diffractometric, and thermal parameters of chitosan-hydroxypropylmethylcellulose (HPMC) films plasticized with sorbitol were studied. Solutions of HPMC (2% w/v) in water and chitosan (2% w/v) in 2% acetic acid solution were prepared. The concentration of sorbitol used was 10% (w/w) to both polymers. This solutions were mixed at different proportions (100/0; 70/30; 50/50; 30/70, and 0/100) of chitosan and HPMC, respectively, and 20 mL was cast in Petri dishes for further analysis of dried films. The miscibility of polymers was assessed by X-ray diffraction, scanning electronic microscopy (SEM), differential scanning calorimetry (DSC), and thermal gravimetric analysis (TGA). The results obtained indicate that the films are not fully miscible at a dry state despite the weak hydrogen bonding between the polymer functional groups.