235 resultados para Host-specificity
Resumo:
Ki-67 is a protein expressed in the nucleus of several species during cell-division, being absent during the GO resting phase of the cellular cycle. During attempts to disclose mitosis in the so-called " amebocyte-producing organ " in Biomphalaria glabrata infected with Schistosoma mansoni, the parasite multiplying forms appeared strongly marked for Ki-67, while the snail tissues were completely negative. These data are worth registering to complement general data on Ki-67, and to help future studies on the relationship of the parasite and of its intermediate host.
Resumo:
Analysing human genetic variation provides a powerful tool in understanding risk factors for disease. Toxoplasma gondii acquired by the mother can be transmitted to the fetus. Infants with the most severe clinical signs in brain and eye are those infected early in pregnancy when fetal immunity is least well developed. Genetic analysis could provide unique insight into events in utero that are otherwise difficult to determine. We tested the hypothesis that propensity for T. gondii to cause eye disease is associated with genes previously implicated in congenital or juvenile onset ocular disease. Using mother-child pairs from Europe (EMSCOT) and child/parent trios from North America (NCCCTS), we demonstrated that ocular and brain disease in congenital toxoplasmosis associate with polymorphisms in ABCA4 encoding ATP-binding cassette transporter, subfamily A, member 4 previously associated with juvenile onset retinal dystrophies including Stargardt's disease. Polymorphisms at COL2A1 encoding type II collagen, previously associated with Stickler syndrome, associated only with ocular disease in congenital toxoplasmosis. Experimental studies showed that both ABCA4 and COL2A1 show isoform-specific epigenetic modifications consistent with imprinting, which provided an explanation for the patterns of inheritance observed. These genetic and epigenetic risk factors provide unique insight into molecular pathways in the pathogenesis of disease.
Resumo:
Host lipids have been implicated in the pathogenesis of Toxoplasma gondiiinfection. To determine if Toxoplasmainfection influences the lipid status in the normal host, we assessed serum lipids of Swiss-Webster mice during infection with the BGD-1 strain (type-2) at a series of time points. Mice were bled at days zero and 42 post-infection, and subgroups were additionally bled on alternating weeks (model 1), or sacrificed at days zero, 14 and 42 (model 2) for the measurement of total cholesterol (Chl), high density lipoproteins (HDL), low density lipoproteins (LDL) and triglycerides and adiponectin. At day 42, brains were harvested for cyst enumeration. A significant decrease (p = 0.02) in HDL and total Chl was first noted in infected vs. control mice at day 14 and persisted to day 42 (p = 0.013). Conversely, LDL was unaltered until day 42, when it increased (p = 0.043). Serum LDL levels at day 42 correlated only with cyst counts of above 300 (found in 44% mice), while the change in HDL between days zero and 42 correlated with both the overall mean cyst count (p = 0.041) and cyst counts above 300 (p = 0.044). Calculated per cyst, this decrease in HDL in individual animals ranged from 0.1-17 µmol/L, with a mean of 2.43 ± 4.14 µmol/L. Serum adiponectin levels remained similar between infected and control mice throughout the experiment.
Resumo:
The apicomplexan parasite Toxoplasma gondii is unusual in being able to infect almost any cell from almost any warm-blooded animal it encounters. This extraordinary host-range contrasts with its far more particular cousins such as the various species of the malaria parasite Plasmodium where each species of parasite has a single genus or even species of host that it can infect. Genetic and genomic studies have revealed a key role for a number of gene families in how Toxoplasma invades a host cell, modulates gene expression of that cell and successfully evades the resulting immune response. In this review, I will explore the hypothesis that a combination of sexual recombination and expansion of host range may be the major driving forces in the evolution of some of these gene families and the specific genes they encompass. These ideas stem from results and thoughts published by several labs in the last few years but especially recent papers on the role of different forms of rhoptry proteins in the relative virulence of F1 Toxoplasma progeny in a particular host species (mice).
Resumo:
Toxoplasmosis and ascaridiasis evoke polar Th-1 and Th-2 host immune responses, respectively. A study to investigate the specific cytokine profile production by in vitro cultures of peripheral blood mononuclear cells from individuals living under precarious sanitary conditions in a highly endemic area for the parasites Toxoplasma gondii and Ascaris lumbricoides was conducted. High levels of both IFN-³ (Th-1) and IL-13 (Th-2) were observed in groups of co-infected individuals presenting toxoplasmic ocular lesions. Significantly lower IL-10 and TGF-² levels were produced by co-infected individuals in comparison with groups of individuals not infected with A. lumbricoides and either positive or negative for T. gondii living under good sanitary conditions (control groups). The possible influence of co-parasitism on the clinical presentation of ocular toxoplasmosis is discussed.
Resumo:
Paracoccidioides brasiliensis causes infection through inhalation by the host of airborne propagules from the mycelium phase of the fungus. This fungus reaches the lungs, differentiates into the yeast form and is then disseminated to virtually all parts of the body. Here we review the identification of differentially-expressed genes in host-interaction conditions. These genes were identified by analyzing expressed sequence tags (ESTs) from P. brasiliensis cDNA libraries. The P. brasiliensis was recovered from infected mouse liver as well as from fungal yeast cells incubated in human blood and plasma, mimicking fungal dissemination to organs and tissues and sites of infection with inflammation, respectively. In addition, ESTs from a cDNA library of P. brasiliensis mycelium undergoing the transition to yeast were previously analyzed. Together, these studies reveal significant changes in the expression of a number of genes of potential importance in the host-fungus interaction. In addition, the unique and divergent representation of transcripts when the cDNA libraries are compared suggests differential gene expression in response to specific niches in the host. This analysis of gene expression patterns provides details about host-pathogen interactions and peculiarities of sites within the host.
Resumo:
Histoplasma capsulatum is an intracellular fungal pathogen that causes respiratory and systemic disease by proliferating within phagocytic cells. The binding of H. capsulatum to phagocytes may be mediated by the pathogen's cell wall carbohydrates, glucans, which consist of glucose homo and hetero-polymers and whose glycosydic linkage types differ between the yeast and mycelial phases. The ±-1,3-glucan is considered relevant for H. capsulatum virulence, whereas the ²-1,3-glucan is antigenic and participates in the modulation of the host immune response. H. capsulatum cell wall components with lectin-like activity seem to interact with the host cell surface, while host membrane lectin-like receptors can recognize a particular fungal carbohydrate ligand. This review emphasizes the relevance of the main H. capsulatum and host carbohydrate-driven interactions that allow for binding and internalization of the fungal cell into phagocytes and its subsequent avoidance of intracellular elimination.
Resumo:
The study investigated the development and stage specificity of physiological resistance to insecticides in a colony of Culex quinquefasciatus Say (Diptera: Culicidae) mosquitoes, which are vectors of bancroftian filariasis in India, after selection with deltamethrin. Resistance was selected by exposing the larvae to the concentration of deltamethrin that caused 50% mortality in the tested population (i.e., LC50). Under continuous selection pressure, the LC50 increased steadily in subsequent generations. The estimated LC50 for the F0 generation was 0.409 μg/L; the LC50 first displayed a substantial increase in the F5 generation (5.616 μg/L) and reached 121.902 μg/L in the F10 generation. The objective of this study was to establish a deltamethrin-resistant colony to develop a research programme that will study the evolution of physiological resistance patterns and stage-specific resistance responses in Cx. quinquefasciatus larvae and adults under laboratory conditions. An approximately 298-fold increase in resistance was recorded after 10 generations, as evidenced by the resistance ratio (RR50). The progress and effect of the selection pressure in the adult stage was monitored with the World Health Organisation (WHO) diagnostic test. The mortality, as observed using the WHO diagnostic test, declined significantly from the F5 generation (85%) onwards and the highest rate of survival (65%) was observed in the F10 generation.
Resumo:
During a five-year period, 932 clinical isolates from cancer patients treated in a Brazilian reference centre were identified as corynebacteria; 86% of the cultures came from patients who had been clinically and microbiologically classified as infected and 77.1% of these patients had been hospitalised (71.1% from surgical wards). The adult solid tumour was the most common underlying malignant disease (66.7%). The univariate and multivariate analyses showed that hospitalised patients had a six-fold greater risk (OR = 5.5, 95% CI = 1.15-26.30 p = 0.033) related to 30-day mortality. The predominant species were Corynebacterium amycolatum (44.7%), Corynebacterium minutissimum (18.3%) and Corynebacterium pseudodiphtheriticum (8.5%). The upper urinary tracts, surgical wounds, lower respiratory tracts, ulcerated tumours and indwelling venous catheters were the most frequent sources of C. amycolatum strains. Corynebacterium jeikeium infection occurred primarily in neutropenic patients who have used venous catheters, while infection caused by C. amycolatum and other species emerged mainly in patients with solid tumours.
Resumo:
In spite of evident progress in the serology of Chagas disease, the requirement for new diagnostic antigens persists. We have evaluated different antigens obtained from Trypanosoma cruzi grown in medium rich in nutrients or under nutrient stress, autoclaved or sonicated and fractionated by differential centrifugation. The resulting antigens were evaluated for diagnosis of Chagas disease using ELISA. Immunofluorescence of the parasites demonstrated that nutrient stress induced changes in the distribution and density of antigens recognised by a pool of sera from experimentally infected mice. When evaluated using ELISA, it was evident that most fractions had good sensitivity but poor specificity. Surprisingly, the best specificity and sensitivity was observed with parasites cultured under nutrient stress and autoclaved. Furthermore this antigen had low cross reactivity with sera from other parasitic diseases, Leishmaniasis in particular. Western blot analysis demonstrated that autoclaving seems to non-specifically eliminate cross-reactive antigens. In conclusion, autoclaving epimastigotes of T. cruzi, after nutrient stress, allowed us to obtain an antigen that could be used in the serological diagnosis of Chagas disease.
Resumo:
A fish-infecting myxosporean, Henneguya hemiodopsis sp. n., found infecting the gills of Hemiodopsis microlepis and collected from the Poty River near the city of Teresina, Brazil, was described based on ultrastructural studies. The parasite occurred within large whitish polysporic plasmodia (up to 200 μm in diameter) containing asynchronous developmental sporogonic stages, mainly mature spores. The spores measured 19.7 ± 0.9 μm in total length (n = 30) and the ellipsoidal spore body was 10.8 ± 0.5 μm long, 3.3 ± 0.4 μm wide and 2.5 ± 0.5 μm thick. The spores were composed of two equal shell valves adhering together along the straight suture line, with each valve having equal-sized caudal tapering tails measuring 8.7 ± 0.6 μm in length. The spores were surrounded by a thin anastomosed network of microfibrils, more evident on the tails. There were two symmetric elongated bottle-like polar capsules 3.5 ± 0.3 μm long and 1.0 ± 0.2 μm wide, each with a polar filament with five to six coils. Given the morphological and ultrastructural differences from previously described parasites and the specificity of the host species, we propose a new species, named H. hemiodopsis sp. n.
Resumo:
Proline racemase is an important enzyme of Trypanosoma cruzi and has been shown to be an effective mitogen for B cells, thus contributing to the parasite's immune evasion and persistence in the human host. Recombinant epimastigote parasites overexpressing TcPRAC genes coding for proline racemase present an augmented ability to differentiate into metacyclic infective forms and subsequently penetrate host-cells in vitro. Here we demonstrate that both anti T. cruzi proline racemase antibodies and the specific proline racemase inhibitor pyrrole-2-carboxylic acid significantly affect parasite infection of Vero cells in vitro. This inhibitor also hampers T. cruzi intracellular differentiation.
Resumo:
Since the discovery of Trypanosoma cruzi and the brilliant description of the then-referred to "new tripanosomiasis" by Carlos Chagas 100 years ago, a great deal of scientific effort and curiosity has been devoted to understanding how this parasite invades and colonises mammalian host cells. This is a key step in the survival of the parasite within the vertebrate host, and although much has been learned over this century, differences in strains or isolates used by different laboratories may have led to conclusions that are not as universal as originally interpreted. Molecular genotyping of the CL-Brener clone confirmed a genetic heterogeneity in the parasite that had been detected previously by other techniques, including zymodeme or schizodeme (kDNA) analysis. T. cruzi can be grouped into at least two major phylogenetic lineages: T. cruzi I, mostly associated with the sylvatic cycle and T. cruzi II, linked to human disease; however, a third lineage, T. cruziIII, has also been proposed. Hybrid isolates, such as the CL-Brener clone, which was chosen for sequencing the genome of the parasite (Elias et al. 2005, El Sayed et al. 2005a), have also been identified. The parasite must be able to invade cells in the mammalian host, and many studies have implicated the flagellated trypomastigotes as the main actor in this process. Several surface components of parasites and some of the host cell receptors with which they interact have been described. Herein, we have attempted to identify milestones in the history of understanding T. cruzi- host cell interactions. Different infective forms of T. cruzi have displayed unexpected requirements for the parasite to attach to the host cell, enter it, and translocate between the parasitophorous vacuole to its final cytoplasmic destination. It is noteworthy that some of the mechanisms originally proposed to be broad in function turned out not to be universal, and multiple interactions involving different repertoires of molecules seem to act in concert to give rise to a rather complex interplay of signalling cascades involving both parasite and cellular components.
Resumo:
This study is the first report on genetic differences between isolates of Paracoccidioides brasiliensis from a single patient. We describe a simultaneous infection with genetically distinct isolates of P. brasiliensis in a patient with chronic paracoccidioidomycosis. The clinical isolates were obtained from lesions in different anatomical sites and were characterised by random amplified polymorphic DNA (RAPD) analysis. The RAPD technique can be helpful for distinguishing between clinical isolates. Different random primers were used to characterise these clinical isolates. The RAPD patterns allowed for differentiation between isolates and the construction of a phenetic tree, which showed more than 28% genetic variability in this fungal species, opening new possibilities for clinical studies of P. brasiliensis. Based on these results and preliminary clinical findings, we suggest that different genotypes of P. brasiliensis might infect the same patient, inducing the active form of the disease.
Resumo:
A myxosporean parasite in the gill lamellae of the freshwater teleost fish, Sciades herzbergii (Ariidae) (Block, 1794), from the Poti River (Northeast of Brazil) was described by light and electron microscopy studies. Polysporic histozoic cyst-like plasmodia containing several life-cycle stages, including mature spores, were observed. The spores were pyriform and uninucleate, measuring 9.15 ± 0.39 μm (n = 50) long, 4.36 ± 0.23 μm (n = 25) wide and 2.61 ± 0.31 μm (n = 25) thick. Elongated pyriform polar capsules (PC) were of equal size (4.44 ± 0.41 μm long and 1.41 ± 0.42 μm in diameter) and each contained a polar filament with 9-10 coils obliquely arranged in relation to the axis of PC. The PC wall was composed of two layers of different electron densities. Histological analysis revealed the close contact of the cyst-like plasmodia with the basal portion of the epithelial gill layer, which exhibited some alterations in the capillary vessels. Based on the morphological and ultrastructural differences, the similarity of the spore features to those of the genus Myxobolus and the specificity of this host to previously described species, we describe a new species named Myxobolus sciades n. sp. in this study.