288 resultados para Host biology
Resumo:
The entire life cycle of Rhodnius domesticus, fed weekly on mice, was studied under controlled conditions. Aspects related to hatching, life time, mortality, feeding behaviour and fecundity for each stage of the insect life-cycle were evaluated. The hatching rate observed in 100 eggs was 57% and the mean time of hatching was 15.6 days. Forty-six nymphs (80.7%) completed the cycle and the mean time from NI to adult was 93.8 days. The average span in days for each stage was 12.4 for NI, 9.8 for NII, 14.2 for NIII, 16.8 for NIV and 25.0 for NV. The number of bloodmeals in each nymphal stage varied from 1 to 3. The mortality rate was 12.3% for NI, 3.5% for NII and 1.7% for NIII and NV nymphs. The mean number of eggs laid per female in a 9-month period was 333.1. Average adult survival rates were 287.6 +133 and 328 +73 days for males and females respectively.
Resumo:
The parasitic specificity of larval, nymph and adult Amblyomma cajennense on six different host species: Oryctolagus cuniculus, Rattus norvegicus, Gallus gallus domesticus, Anas platyrhynchus, Coturnix coturnix and Streptopelia decorata is described. In terms of the numbers of larvae and nymphs recovered, O. cuniculus was the best host species. The modal day for drop-off of larvae and nymphs was day three for the mammal hosts, but variable in the birds. We conclude that adult A. cajennense have a strong degree of specificity due to the fact that the tick failed to complete its life cycle on any of the evaluated hosts. The immature stages, on the other hand, showed a low level of specificity, most especially in the larval stage, indicating the existence of secondary hosts which probably serve as dispersers in the wild. The results also indicated a variable drop-off rhythm for larvae and nymphs in two periods, diurnal (6-18 hr) and nocturnal (18-6 hr), which differed depending upon the host.
Resumo:
Genetic typing of pathogenic agents and of vectors has known impressive developments in the last 10 years, thanks to the progresses of molecular biology, and to the contribution of the concepts of evolutionary genetics. Moreover, we know more and more on the genetic susceptibility of man to infectious diseases. I propose here to settle a new, synthetic field of research, which I call `integrated genetic epidemiology of infectious diseases' (IGEID). I aim at evaluating, by an evolutionary genetic approach, the respective impact, on the transmission and pathogenicity of infectious diseases, of the host's, the pathogen's and the vector's genetic diversity, and their possible interactions (co-evolution phenomena). Chagas' disease constitutes a fine model to develop the IGEID methodology, by both field and experimental studies.
Resumo:
Ectoparasitic batflies were studied on 12 species of phyllostomid bats, by making 35 nightly collections of bats using mist nets at the "Panga" Ecological Reservation near Uberlândia, State of Minas Gerais, southeastern Brazil, from August 1989 to July 1990. Eleven species of Streblidae and one of Nycteribiidae were collected on 12 species of bats. Prevalence of ectoparasitic flies was lower than those reported by other authors for the New World and may be the result of the lack of caves in the study area, causing bats to roost in less favorable locations, forming smaller colonies. The fly, Trichobius joblingi Wenzel, was found on Carollia perspicillata (Linnaeus), showing preference for adult male bats. This could be explained by the predominance of males in the bat colonies, and by the fact that females rest in isolation during the reproductive period making them less exposed to the parasites. The streblid flies, Aspidoptera falcata Wenzel and Megistopoda proxima (Séguy), were found on Sturnira lilium (Geoffroy). A. falcata occurred mainly on young and adult females, whereas M. proxima did not show any preferences relative to the reproductive condition of the host. Ecological factors are important in determining differential numbers of parasites occurring on the different sexes, ages and reproductive state of the hosts.
Resumo:
The intermediate hosts of Angiostrongylus costaricensis are terrestrian molluscs, mostly of the family Veronicellidae. The present work aimed at clarifying more accurately the sites of penetration and the migratory routes of A. costaricensis in the tissue slugs and at verifying the pattern of the perilarval reaction at different times of infection. Slugs were individually infected with 5,000 L1, and killed from 30 min to 30 days after infection. From 30 min up to 2 hr after infection, L1 were found within the lumen of different segments of the digestive tube having their number diminished in more advanced times after exposition until complete disappearance. After 30 min of exposition, percutaneous infection occurred, simultaneously to oral infection. Perilarval reaction was observed from 2 hr of infection around larvae in fibromuscular layer, appearing later (after 6 hr) around larvae located in the viscera. A pre-granulomatous reaction was characterized by gradative concentration of amebocytes around larvae, evolving two well-organized granulomas. In this work we confirmed the simultaneous occurrence of oral and percutaneous infections. Perilarval reaction, when very well developed, defined typical granulomatous structure, including epithelioid cell transformation. The infection also caused a systemic mobilization of amebocytes and provoked amebocyte-endothelium interactions.
Resumo:
Larval stages and adults of Procamallanus (Spirocamallanus) pereirai Annereaux, 1946 are described from naturally infected Paralonchurus brasiliensis (Steindachner) (Sciaenidae) from the coast of the State of Rio de Janeiro, Brazil. The translucent first-stage larvae have a denticulate process at the anterior end, no buccal capsule or esophagus undifferentiated into anterior muscular and posterior glandular parts and an elongate tail; third-stage larvae have a tail with three terminal projections, a buccal capsule divided into an anterior portion with 12-20 ridges running to the left and a posterior smooth portion, and an esophagus with muscular and glandular regions. Fourth-stage larvae exhibit a buccal capsule lacking a distinct basal ring with ridges running to the right and a tail with two terminal processes, as in adults. New host records are reported and their role in its life-cycle are discussed.
Resumo:
Aspects related to hatching, life time, mortality, feeding behaviour and fecundity for each stage of Triatoma pallidipennis life-cycle were evaluated. The hatching rate observed for 200 eggs was 60% and the average time of hatching was 18 days. Eighty nymphs (N) (40%) completed the cycle and the average time from NI to adult was 168.7±11.7days. The average span in days for each stage was 18.0 for NI, 18.5 for NII, 30.0 for NIII, 35.7 for NIV and 50.1 for NV. The number of bloodmeals at each nymphal stage varied from 1 to 5. The mortality rate was 9.17 for NI, 5.5 for NII, 6.8 for NIII 4.17 for NIV and 13.04 for NV nymphs. The average number of eggs laid per female in a 9-month period was 498.6. The survival rates of adults were 357±217.9 and 262.53±167.7 for males and females respectively.
Resumo:
Through its life cycle from the insect vector to mammalian hosts Trypanosoma cruzi has developed clever strategies to reach the intracellular milieu where it grows sheltered from the hosts' immune system. We have been interested in several aspects of in vitro interactions of different infective forms of the parasite with cultured mammalian cells. We have observed that not only the classically infective trypomastigotes but also amastigotes, originated from the extracellular differentiation of trypomastigotes, can infect cultured cells. Interestingly, the process of invasion of different parasite infective forms is remarkably distinct and also highly dependent on the host cell type.
Internalization of components of the host cell plasma membrane during infection by Trypanosoma cruzi
Resumo:
Epimastigote and trypomastigote forms of Trypanosoma cruzi attach to the macrophage surface and are internalized with the formation of a membrane bounded vacuole, known as the parasitophorous vacuole (PV). In order to determine if components of the host cell membrane are internalized during formation of the PV we labeled the macrophage surface with fluorescent probes for proteins, lipids and sialic acid residues and then allowed the labeled cells to interact with the parasites. The interaction process was interrupted after 1 hr at 37ºC and the distribution of the probes analyzed by confocal laser scanning microscopy. During attachment of the parasites to the macrophage surface an intense labeling of the attachment regions was observed. Subsequently labeling of the membrane lining the parasitophorous vacuole containing epimastigote and trypomastigote forms was seen. Labeling was not uniform, with regions of intense and light or no labeling. The results obtained show that host cell membrane lipids, proteins and sialoglycoconjugates contribute to the formation of the membrane lining the PV containing epimastigote and trypomastigote T. cruzi forms. Lysosomes of the host cell may participate in the process of PV membrane formation.
Resumo:
Integration of kDNA sequences within the genome of the host cell shown by PCR amplification with primers to the conserved Trypanosoma cruzi kDNA minicircle sequence was confirmed by Southern hybridization with specific probes. The cells containing the integrated kDNA sequences were then perpetuated as transfected macrophage subclonal lines. The kDNA transfected macrophages expressed membrane antigens that were recognized by antibodies in a panel of sera from ten patients with chronic Chagas disease. These antigens barely expressed in the membrane of uninfected, control macrophage clonal lines were recognized neither by factors in the control, non-chagasic subjects nor in the chagasic sera. This finding suggests the presence of an autoimmune antibody in the chagasic sera that recognizes auto-antigens in the membrane of T. cruzi kDNA transfected macrophage subclonal lines.
Resumo:
The intermediate host of Fasciola hepatica, Lymnaea columella, collected in Belo Horizonte, Minas Gerais, Brazil, was reared in our laboratory. The aim of the current study was to standardize a rearing and maintenance technique. Two kinds of diet were tested: fresh lettuce (A) and rodent ration + 10% CaCO3 plus fresh lettuce (B). The age for the beginning of oviposition ranged from 27 to 57 days. Ten days after oviposition at 24.7°C, 100% eclosion occurred. The complete life cycle varied from 37 to 67 days. The average numbers of eggs per egg mass were 26.3 and 31.1 with diets (A) and (B), respectively. The lettuce and ration fed snails presented a increased growth although the difference was not statistically significant (p > 0.05). The mortality rate varied from 40 to 64% after 90 days. The maximum longevity was 183 days, 21.5 mm length and 11 mm wide. The methodology to mass breed and maintain these snails was found to be suitable in the laboratory