340 resultados para Chabaudi-adami Malaria


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although several animal models for human cerebral malaria have been proposed in the past, name have shown pathological findings that are similar to those seen in humans. In order to develop an animal model for human cerebral malaria, we studied the pathology of brains of Plasmodium coatneyi (primate malaria parasite)-infected rhesus monkeys. Our study demonstrated parazitized erythrocyte (PRBC) sequestration and cytoadherence of knobs on PRBC to endothelial cells in cerebral microvessels of these monkeys. This similar to the findings een in human cerebral malaria. Crebral microvessels with sequestred PRBC were shown by immunohistochemistry to possess CD36, TSP and ICAM-1. These proteins were not evident in cerebral microvessels of uninfected control monkeys. Our study indicates, for the first time, that rhesus monkeys infected with P. coatneyi can be used as a primate model to study human cerebral malaria.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present paper reviews our recent data concerning the use of immunological methods employing monoclonal antibodies and synthetic peptides to study malaria transmission and immunity and to diagnose plasmodial infection. As concerns malaria transmission, we studied the main vectors of human malaria and the plasmodial species transmitted in endemic areas of Rondônia state, Brazil. The natural infection on anopheline was evaluated by immunoradiometric assay (IRMA) using monoclonal antibodies to an immunodominant sporozoite surface antigen (CS protein) demonstrated to be species specific. Our results showed that among six species of Anopheles found infected, An. darlingi was the main vector transmitting Plasmodium falciparum and P. vivax malaria in the immediate vicinity of houses. In order to assess the level of anti-CS antibodies we studied, by IRMA using the synthetic peptide corresponding to the repetitive epitope of the sporozoite CS protein, sera of individuals living in the same areas where the entomological survey has been performed. In this assay the prevalence of anti-CS antibodies was very low and did not reflect the malaria transmission rate in the studied areas. In relation to malaria diagnosis, a monoclonal antibody specific to an epitope of a 50 kDa exoantigen, the major component of supernatant collected at the time of schizont rupture, was used as a probe for the detection of P. falciparum antigens. This assay seemed to be more sensitive than parasitological examination for malaria diagnosis since it was able to detect plasmodial antigens in both symptomatic and asymtomatic individuals with negative thick blood smear at different intervals after a last parasitologically confirmed confirmed attack of malaria.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many factors determine the virulence of a malaria infection. These include host innate resistance mechanisms and, with Plasmodium falciparum, the ability to cytoadhere to endothelial cells, form rosetts, and induce release of cytokines. The effect on virulence of acquired immune responses can be determined by Class I and Class II MHC-antigens; levels of immunological responsiveness may be determined too in other ways. The structure of parasite surface antigens and their great diversity modulate the immune response and influence parasite survival and hence virulence, and transmission to the vector.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Preliminary results are presented from this study which indicate that 84.8 of pregnant women present at first antenatal visit with anemia (Hb 11g/dl) an 8.7 of their infants (n = 230) have a hemoglobin at birth below 14g/dl. There is an association between pregnancy anemia and malaria. A case control study in pregnant women and an infant cohort study to 18 months of age, are employed to study the cause and effects of anemia and malaria on women and their infants health.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The most unique characteristic of a parasite when it is in its normal host is the ability to make itself tolerated, which clearly indicates that it has sophisticated means to ensure the neutrality of its host. This is true also in the case of Plasmodium falciparum, since after numerous malaria attacks an equilibrium is reached with a chronic stage of infection, characterized by a relatively low parasitemia, and low or no disease (Sergent & Parrot 1935). We shall briefly review the main characteristics of this state of "premunition", and present data suggesting that the underlying mechanisms of defense rely on the cooperation between cell and antibodies, leading to an antibody dependent cellular inhibition of the intra-erythrocytic growth of the parasite.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The systematic screening of more than 250 molecules against Plasmodium falciparum in vitro has previously shown that interfering with phospholipid metabolism is lethal to the malaria parasite. These compounds act by impairing choline transport in infected erythrocytes, resulting in phosphatidylcholine de novo biosynthesis inhibition. A thorough study was carried out with the leader compound G25, whose in vitro IC50 is 0.6 nM. It was very specific to mature parasites (trophozoïtes) as determined in vitro with P. falciparum and in vivo with P. chabaudi -infected mice. This specificity corresponds to the most intense phase of phospholipid biosynthesis activity during the parasite cycle, thus corroborating the mechanism of action. The in vivo antimalarial activity (ED50) against P. chabaudi was 0.03 mg/kg, and a similar sensitivity was obtained with P. vinckei petteri, when the drug was intraperitoneally administered in a 4 day suppressive test. In contrast, P. berghei was revealed as less sensitive (3- to 20-fold, depending on the P. berghei-strain). This difference in activity could result either from the degree of synchronism of every strain, their invasion preference for mature or immature red blood cells or from an intrinsically lower sensitivity of the P. berghei strain to G25. Irrespective of the mode of administration, G25 had the same therapeutic index (lethal dose 50 (LD50)/ED50) but the dose to obtain antimalarial activity after oral treatment was 100-fold higher than after intraperitoneal (or subcutaneous) administration. This must be related to the low intestinal absorption of these kind of compounds. G25 succeeded to completely inhibiting parasitemia as high as 11.2% without any decrease in its therapeutic index when administered subcutaneously twice a day for at least 8 consecutive days to P. chabaudi -infected-rodent model. Transition to human preclinical investigations now requires a synthesis of molecules which would permit oral absorption.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The intraerythrocytic malarial parasite is involved in an extremely intensive anabolic activity while it resides in its metabolically quiescent host cell. The necessary fast uptake of nutrients and the discharge of waste product, are guaranteed by parasite-induced alterations of the constitutive transporters of the host cell and the production of new parallel pathways. The membrane of the host cell thus becomes permeable to phospholipids, purine bases and nucleosides, small non-electrolytes, anions and cations. When the new pathways are quantitatively unimportant, classical inhibitors of native transporters can be used to inhibit parasite growth. Several compounds were found to effectively inhibit the new pathways and consequently, parasite growth. The pathways have also been used to introduce cytotoxic agents. The parasitophorous membrane consists of channels which are highly permeable to small solutes and display no ion selectivity. Transport of some cations and anions across the parasite membrane is rapid and insensitive to classical inhibitors, and in some cases it is mediated by specific antiporters which respond to their respective inhibitors. Macromolecules have been shown to reach the parasitophorous space through a duct contiguous with the host cell membrane, and subsequently to be endocytosed at the parasite membrane. The simultaneous presence of the parasitophorous membrane channels and the duct, however, is incompatible with experimental evidences. No specific inhibitors were found as yet that would efficiently inhibit transport through the channels or the duct.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chimpanzees are being used in the study of immune response to Plasmodium falciparum malaria pre-erythrocytic stages (MPES). Responses induced by immunisation with recombinant/synthetic antigens and by irradiated sporozoites are being evaluated in a model system that is phylogenetically close to humans and that is amenable to limited manipulation not possible in humans. The value of chimpanzees for the in-depth study of immunological mechanisms at work in MPES-induced protection are discussed. A total number of 7 chimpanzees have been used to evaluate the immune response to recombinant antigens, and 5 have been challenged with large numbers of sporozoites, followed by surgical liver-wedge resection, in order to generate infected liver tissue for histological and immunological studies. As a complementary model, SCID mice carrying live, transplanted human and primate hepatocytes have been inoculated with sporozoites and infection of transplanted cells has been monitored by histological and immunological methods. In ongoing experiments chimpanzees are being immunised with MPES-derived lipopeptides that have been shown to overcome MHC restriction in mice, and with irradiated sporozoites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The parasite that causes simian malaria in the Brazilian Amazon, Plasmodium brasilianum, is infective to man. In this region, where humans live within and in close proximity to the forest, it was suspected that this parasite could be the cause of a zoonosis. A study was performed in the areas surrounding two hydroelectric plants in the Amazon, Balbina and Samuel, aiming at determining the zoonotic potential of this parasite. P. brasilianum was detected in, respectively, 15.8% and 9.9% of 126 and 252 primates belonging to seven and eight species examined from Balbina and Samuel. The highest malaria infection rates were found among the red-howler monkey Alouatta seniculus straminea (32.3%), the bearded-saki Chiropotes satanas chiropotes (50%) and the spider-monkey Ateles paniscus paniscus (2[1+]) from Balbina and in the squirrel-monkey Saimiri ustus (21%) and the black-faced-spider-monkey Ateles paniscus chamek (28.6%) from Samuel.