169 resultados para Alimento animal
Resumo:
Animal extremism has been increasing worldwide; frequently researchers are the targets of actions by groups with extreme animal rights agendas. Sometimes this targeting is violent and may involve assaults on family members or destruction of property. In this article, we summarize recent events and suggest steps that researchers can take to educate the public on the value of animal research both for people and animals
Resumo:
The main objective of the present study was to upgrade a clinical gamma camera to obtain high resolution tomographic images of small animal organs. The system is based on a clinical gamma camera to which we have adapted a special-purpose pinhole collimator and a device for positioning and rotating the target based on a computer-controlled step motor. We developed a software tool to reconstruct the target’s three-dimensional distribution of emission from a set of planar projections, based on the maximum likelihood algorithm. We present details on the hardware and software implementation. We imaged phantoms and heart and kidneys of rats. When using pinhole collimators, the spatial resolution and sensitivity of the imaging system depend on parameters such as the detector-to-collimator and detector-to-target distances and pinhole diameter. In this study, we reached an object voxel size of 0.6 mm and spatial resolution better than 2.4 and 1.7 mm full width at half maximum when 1.5- and 1.0-mm diameter pinholes were used, respectively. Appropriate sensitivity to study the target of interest was attained in both cases. Additionally, we show that as few as 12 projections are sufficient to attain good quality reconstructions, a result that implies a significant reduction of acquisition time and opens the possibility for radiotracer dynamic studies. In conclusion, a high resolution single photon emission computed tomography (SPECT) system was developed using a commercial clinical gamma camera, allowing the acquisition of detailed volumetric images of small animal organs. This type of system has important implications for research areas such as Cardiology, Neurology or Oncology.
Resumo:
Dilated cardiomyopathy can be the end-stage form and common denominator of several cardiac disorders of known cause, such as hypertensive, ischemic, diabetic and Chagasic diseases. However, some individuals have clinical findings, such as an increase in ventricular chamber size and impaired contractility (classical manifestations of dilated cardiomyopathy) even in the absence of a diagnosed primary disease. In these patients, dilated cardiomyopathy is classified as idiopathic since its etiology is obscure. Nevertheless, regardless of all of the advances in medical, pharmacological and surgical procedures, the fate of patients with dilated cardiomyopathy (of idiopathic or of any other known cause) is linked to arrhythmic episodes, severe congestive heart failure and an increased risk of sudden cardiac death. In this review, we will summarize present data on the use of cell therapies in animal models of dilated cardiomyopathies and will discuss the few clinical trials that have been published so far involving patients affected by this disease. The animal models discussed here include those in which the cardiomyopathy is produced by genetic manipulation and those in which disease is induced by chemical or infectious agents. The specific model used clearly creates restrictions to translation of the proposed cell therapy to clinical practice, insofar as most of the clinical trials performed to date with cell therapy have used autologous cells. Thus, translation of genetic models of dilated cardiomyopathy may have to wait until the use of allogeneic cells becomes more widespread in clinical trials of cell therapies for cardiac diseases.
Resumo:
Local anesthetic efficacy of tramadol has been reported following intradermal application. Our aim was to investigate the effect of perineural tramadol as the sole analgesic in two pain models. Male Wistar rats (280-380 g; N = 5/group) were used in these experiments. A neurostimulation-guided sciatic nerve block was performed and 2% lidocaine or tramadol (1.25 and 5 mg) was perineurally injected in two different animal pain models. In the flinching behavior test, the number of flinches was evaluated and in the plantar incision model, mechanical and heat thresholds were measured. Motor effects of lidocaine and tramadol were quantified and a motor block score elaborated. Tramadol, 1.25 mg, completely blocked the first and reduced the second phase of the flinching behavior test. In the plantar incision model, tramadol (1.25 mg) increased both paw withdrawal latency in response to radiant heat (8.3 ± 1.1, 12.7 ± 1.8, 8.4 ± 0.8, and 11.1 ± 3.3 s) and mechanical threshold in response to von Frey filaments (459 ± 82.8, 447.5 ± 91.7, 320.1 ± 120, 126.43 ± 92.8 mN) at 5, 15, 30, and 60 min, respectively. Sham block or contralateral sciatic nerve block did not differ from perineural saline injection throughout the study in either model. The effect of tramadol was not antagonized by intraperitoneal naloxone. High dose tramadol (5 mg) blocked motor function as well as 2% lidocaine. In conclusion, tramadol blocks nociception and motor function in vivo similar to local anesthetics.
Resumo:
Prenatal immune challenge (PIC) in pregnant rodents produces offspring with abnormalities in behavior, histology, and gene expression that are reminiscent of schizophrenia and autism. Based on this, the goal of this article was to review the main contributions of PIC models, especially the one using the viral-mimetic particle polyriboinosinic-polyribocytidylic acid (poly-I:C), to the understanding of the etiology, biological basis and treatment of schizophrenia. This systematic review consisted of a search of available web databases (PubMed, SciELO, LILACS, PsycINFO, and ISI Web of Knowledge) for original studies published in the last 10 years (May 2001 to October 2011) concerning animal models of PIC, focusing on those using poly-I:C. The results showed that the PIC model with poly-I:C is able to mimic the prodrome and both the positive and negative/cognitive dimensions of schizophrenia, depending on the specific gestation time window of the immune challenge. The model resembles the neurobiology and etiology of schizophrenia and has good predictive value. In conclusion, this model is a robust tool for the identification of novel molecular targets during prenatal life, adolescence and adulthood that might contribute to the development of preventive and/or treatment strategies (targeting specific symptoms, i.e., positive or negative/cognitive) for this devastating mental disorder, also presenting biosafety as compared to viral infection models. One limitation of this model is the incapacity to model the full spectrum of immune responses normally induced by viral exposure.
Resumo:
The single photon emission microscope (SPEM) is an instrument developed to obtain high spatial resolution single photon emission computed tomography (SPECT) images of small structures inside the mouse brain. SPEM consists of two independent imaging devices, which combine a multipinhole collimator, a high-resolution, thallium-doped cesium iodide [CsI(Tl)] columnar scintillator, a demagnifying/intensifier tube, and an electron-multiplying charge-coupling device (CCD). Collimators have 300- and 450-µm diameter pinholes on tungsten slabs, in hexagonal arrays of 19 and 7 holes. Projection data are acquired in a photon-counting strategy, where CCD frames are stored at 50 frames per second, with a radius of rotation of 35 mm and magnification factor of one. The image reconstruction software tool is based on the maximum likelihood algorithm. Our aim was to evaluate the spatial resolution and sensitivity attainable with the seven-pinhole imaging device, together with the linearity for quantification on the tomographic images, and to test the instrument in obtaining tomographic images of different mouse organs. A spatial resolution better than 500 µm and a sensitivity of 21.6 counts·s-1·MBq-1 were reached, as well as a correlation coefficient between activity and intensity better than 0.99, when imaging 99mTc sources. Images of the thyroid, heart, lungs, and bones of mice were registered using 99mTc-labeled radiopharmaceuticals in times appropriate for routine preclinical experimentation of <1 h per projection data set. Detailed experimental protocols and images of the aforementioned organs are shown. We plan to extend the instrument's field of view to fix larger animals and to combine data from both detectors to reduce the acquisition time or applied activity.
Resumo:
The duties of humans toward non-human animals and their rights in society have been debated for a long time. However, a discussion on the terminology used for the identification of laboratory animals is usually not considered, although the employment of inadequate terminology may generate disastrous consequences for the animals before, during, and after the experiment. This study intends to defend the use of appropriate terminology, call attention to an unethical attitude of certain professionals when dealing with experimental animals, and also propose operational mechanisms, which allow for those distortions to be corrected.
Resumo:
Overexpression of cytokine-induced apoptosis inhibitor 1 (CIAPIN1) contributes to multidrug resistance (MDR) in breast cancer. This study aimed to evaluate the potential of CIAPIN1 gene silencing by RNA interference (RNAi) as a treatment for drug-resistant breast cancer and to investigate the effect of CIAPIN1 on the drug resistance of breast cancer in vivo. We used lentivirus-vector-based RNAi to knock down CIAPIN1 in nude mice bearing MDR breast cancer tumors and found that lentivirus-vector-mediated silencing of CIAPIN1 could efficiently and significantly inhibit tumor growth when combined with chemotherapy in vivo. Furthermore, Western blot analysis showed that both CIAPIN1 and P-glycoprotein expression were efficiently downregulated, and P53 was upregulated, after RNAi. Therefore, we concluded that lentivirus-vector-mediated RNAi targeting of CIAPIN1 is a potential approach to reverse MDR of breast cancer. In addition, CIAPIN1 may participate in MDR of breast cancer by regulating P-glycoprotein and P53 expression.
Resumo:
Our objective was to observe the biodegradable and osteogenic properties of magnesium scaffolding under in vivo conditions. Twelve 6-month-old male New Zealand white rabbits were randomly divided into two groups. The chosen operation site was the femoral condyle on the right side. The experimental group was implanted with porous magnesium scaffolds, while the control group was implanted with hydroxyapatite scaffolds. X-ray and blood tests, which included serum magnesium, alanine aminotransferase (ALT), creatinine (CREA), and blood urea nitrogen (BUN) were performed serially at 1, 2, and 3 weeks, and 1, 2, and 3 months. All rabbits were killed 3 months postoperatively, and the heart, kidney, spleen, and liver were analyzed with hematoxylin and eosin (HE) staining. The bone samples were subjected to microcomputed tomography scanning (micro-CT) and hard tissue biopsy. SPSS 13.0 (USA) was used for data analysis, and values of P<0.05 were considered to be significant. Bubbles appeared in the X-ray of the experimental group after 2 weeks, whereas there was no gas in the control group. There were no statistical differences for the serum magnesium concentrations, ALT, BUN, and CREA between the two groups (P>0.05). All HE-stained slices were normal, which suggested good biocompatibility of the scaffold. Micro-CT showed that magnesium scaffolds degraded mainly from the outside to inside, and new bone was ingrown following the degradation of magnesium scaffolds. The hydroxyapatite scaffold was not degraded and had fewer osteoblasts scattered on its surface. There was a significant difference in the new bone formation and scaffold bioabsorption between the two groups (9.29±1.27 vs 1.40±0.49 and 7.80±0.50 vs 0.00±0.00 mm3, respectively; P<0.05). The magnesium scaffold performed well in degradation and osteogenesis, and is a promising material for orthopedics.
Resumo:
We developed a forced non-electric-shock running wheel (FNESRW) system that provides rats with high-intensity exercise training using automatic exercise training patterns that are controlled by a microcontroller. The proposed system successfully makes a breakthrough in the traditional motorized running wheel to allow rats to perform high-intensity training and to enable comparisons with the treadmill at the same exercise intensity without any electric shock. A polyvinyl chloride runway with a rough rubber surface was coated on the periphery of the wheel so as to permit automatic acceleration training, and which allowed the rats to run consistently at high speeds (30 m/min for 1 h). An animal ischemic stroke model was used to validate the proposed system. FNESRW, treadmill, control, and sham groups were studied. The FNESRW and treadmill groups underwent 3 weeks of endurance running training. After 3 weeks, the experiments of middle cerebral artery occlusion, the modified neurological severity score (mNSS), an inclined plane test, and triphenyltetrazolium chloride were performed to evaluate the effectiveness of the proposed platform. The proposed platform showed that enhancement of motor function, mNSS, and infarct volumes was significantly stronger in the FNESRW group than the control group (P<0.05) and similar to the treadmill group. The experimental data demonstrated that the proposed platform can be applied to test the benefit of exercise-preconditioning-induced neuroprotection using the animal stroke model. Additional advantages of the FNESRW system include stand-alone capability, independence of subjective human adjustment, and ease of use.
Resumo:
Dados sobre composição de alimentos são importantes para inúmeras atividades, porém são escassos ou inexistentes em nosso país. O presente trabalho teve como objetivo determinar o valor calórico dos alimentos de origem animal comumente usados na dieta: carne, leite e ovos a fim de compará-los com os dados das tabelas de composição centesimal mais utilizadas por profissionais da área. Observou-se que de um modo geral, ocorrem variações entre os valores das tabelas consultadas e os analisados, sendo estes menores para ovos, seguidos de laticínios, carnes suínas, carnes bovinas e aves. Salientamos portanto, a importãncia de obtenção dados sobre a composição de alimentos condizentes com diferenças regionais do Brasil, visto que a maioria das tabelas disponíveis são compilações de dados internacionais.
Resumo:
Foi padronizado e validado um método analítico para determinação de resíduos de nitrofurazona, furazolidona e nicarbazina em tecido muscular empregando-se extração com acetonitrila, purificação com cartuchos de sílica e C18 e detecção e quantificação por CLAE/UV. Nos ensaios com amostras fortificadas entre 5 e 200mg/kg as recuperações médias obtidas variaram de 73,6 a 95,6% com valores de C.V. entre 4,8 e 26,4%. O limite de detecção e quantificação do método foi de 5mg/kg, para cada um dos três resíduos estudados.
Resumo:
A qualidade do alimento oferecido à população sempre foi uma preocupação do governo federal, observada com a publicação, em 27 de fevereiro de 1967, do Decreto Lei 209 que institui o Código Brasileiro de Alimentos. A Portaria 1.428 de 26 de novembro de 1993/ANVISA inova na relação dos fatores contribuintes para a contaminação alimentar, apresentando, nas diretrizes para o estabelecimento de boas práticas de produção e de prestação de serviços na área de alimentos, a desinfestação que compreende o plano de sanitização utilizado pelo estabelecimento. A partir deste momento cria-se uma nova visão dos fatores determinantes de contaminação alimentar, o controle de ratos e insetos. Este procedimento passa a integrar todos os documentos legais que foram sendo gerados pelo Ministério da Saúde e da Agricultura no que se refere ao controle de alimentos. Até a publicação da RDC 275/2002-ANVISA, o controle de pragas urbanas poderia ser feito por equipes treinadas dos estabelecimentos que realizassem: produção/industrialização, fracionamento, armazenamento e transportes de alimentos industrializados, manipulação, preparação, fracionamento, armazenamento, distribuição, transporte, exposição à venda e entrega de alimentos preparados ao consumo, tais como cantinas, bufês, confeitarias, cozinhas industriais, cozinhas institucionais, delicatéssens, lanchonetes, padarias, pastelarias, restaurantes, e congêneres. A partir de sua publicação, o controle químico passa a ser realizado apenas pelas desinsetizadoras que estejam em conformidade com a RDC 18/2000-ANVISA. Entretanto isto não tira a responsabilidade legal da empresa de alimentos que deverá ter em seu POP (Procedimento Operacional Padronizado) a inclusão do controle de pragas, seja físico e/ou químico.
Resumo:
Pseudomonas aeruginosa isolados de peixes de água doce e de frangos foram submetidos ao teste de suscetibilidade aos antimicrobianos utilizando quatorze drogas, com o objetivo de determinar e confrontar os padrões de suscetibilidade deste microrganismo. As cepas oriundas de peixes pertenciam à coleção do Laboratório de Bacterioses/IV/UFRRJ. Para o isolamento das cepas, foram selecionados miúdos (fígado) e cortes (coxa e sobrecoxa) de frangos adquiridos em estabelecimentos comerciais no município do Rio de Janeiro. A metodologia de isolamento incluiu o enriquecimento em água peptonada, seguido de semeadura em Agar EMB e Agar GSP. Para as cepas oriundas de peixes, procedeu-se à reativação em água peptonada, seguida de reisolamento em Agar EMB. Colônias sugestivas foram transferidas para Agar TSI e LIA para avaliação das características metabólicas. A capacidade de produção de pigmento verde-azulado foi avaliada em Agar Mueller-Hinton e a da enzima citocromo-oxidase, em Agar Nutriente. O teste de suscetibilidade a antimicrobianos realizado nas 63 cepas revelou maiores percentuais de resistência para NAL e NIT (96,8%), TCY (93,6%), AMC (92,1%), CHL (90,5%) e SXT (85,7%), destacando-se a multirresistência dos isolados. A totalidade das cepas oriundas de frangos apresentou sensibilidade a CAZ e IPM e nos isolados de peixes a ATM, CAZ, IPM e AMK.
Resumo:
A procura por alimentos orgânicos é expressiva em todo o mundo devido à conscientização da população sobre os riscos para a saúde decorrentes da presença de resíduos químicos nos alimentos. Vários trabalhos sugerem que algumas práticas do sistema orgânico, como o uso de esterco animal e a proibição de aplicação de agrotóxicos possam aumentar o risco de uma contaminação microbiológica e parasitária, tornando o alimento não adequado ao consumo. Dessa forma, a presente pesquisa teve como objetivo determinar a qualidade sanitária de hortaliças orgânicas no que se refere à contaminação microbiológica por coliformes totais e fecais, presença de Salmonella sp. e contaminação parasitológica. Adicionalmente, descreveu-se a qualidade nutricional através de análises de características físico-químicas de alface, tomate e cenoura cultivados organicamente, provenientes da Região Metropolitana de Curitiba-PR. Coliformes fecais foram detectados em 40% das amostras de alface e em 25% das amostras de cenoura. A presença de Salmonella sp. foi verificada em 25% das amostras de cenoura e em 20% das amostras de alface. As amostras de tomate orgânico avaliadas apresentaram ausência de coliformes fecais e Salmonella sp. Os principais parasitas identificados nas amostras de alface orgânica foram: Entamoeba sp., ovos de ácaro, ovos de ancilostomídeo e insetos (pulgões). Nas amostras de cenoura orgânica foram identificados ovos de ancilostomídeo, cistos de Entamoeba sp. e ovos de Toxocara sp. Nenhuma estrutura parasitária foi identificada nas amostras de tomate orgânico. A presença de coliformes fecais, Salmonella sp. e estruturas parasitárias em algumas amostras de alface e cenoura orgânicas demonstraram que foram contaminadas de alguma forma, seja através da água de irrigação, presença de animais silvestres ou domésticos, solo contaminado ou emprego de adubos sem tempo de compostagem adequado.