232 resultados para redução de oxigênio
Resumo:
The exhaust emissions of vehicles greatly contribute to environmental pollution. Diesel engines are extremely fuel-efficient. However, the exhaust compounds emitted by diesel engines are both a health hazard and a nuisance to the public. This paper gives an overview of the emission control of particulates from diesel exhaust compounds. The worldwide emission standards are summarized. Possible devices for reducing diesel pollutants are discussed. It is clear that after-treatment devices are necessary. Catalytic converters that collect particulates from diesel exhaust and promote the catalytic burn-off are examined. Finally, recent trends in diesel particulate emission control by novel catalysts are presented.
Resumo:
In this work, a partial least squares regression routine was used to develop a multivariate calibration model to predict the chemical oxygen demand (COD) in substrates of environmental relevance (paper effluents and landfill leachates) from UV-Vis spectral data. The calibration models permit the fast determination of the COD with typical relative errors lower by 10% with respect to the conventional methodology.
Resumo:
This study was developed with a soil contaminated by heavy metals, with the purpose of evaluating the action of silicon and phosphorus as protection agents through simple extractions by DTPA. The collected samples were prepared and incubated with five doses of silicon and five doses of phosphorus, with four replicates, amounting to 100 experimental units. After 30 and 60 days, samples of each treatment were collected, submitted to pH analyses and simple extraction by DTPA. The amounts of DTPA-extracted metals depended on the doses of silicon and phosphorus and on the pH. Treatments with silicon and phosphorus was efficient in decreasing the availability of heavy metals in soil.
Resumo:
Proteins are potential targets for singlet molecular oxygen (¹O2) oxidation. Damages occur only at tryptophan, tyrosine, histidine, methionine, and cysteine residues at physiological pH, generating oxidized compounds such as hydroperoxides. Therefore, it is important to understand the mechanisms by which ¹O2, hydroperoxides and other oxidized products can trigger further damage. The improvement and development of new tools, such as clean sources of ¹O2 and isotopic labeling approaches in association with HPLC/mass spectrometry detection will allow one to elucidate mechanistic features involving ¹O2-mediated protein oxidation.
Resumo:
The effect of operational variables and their interaction in TPR profiles was studied using a fractional factorial experimental design. The heating rate and the reducing agent concentration were found to be the most important variables determining the resolution and sensitivity of the technique. They showed opposite effects. Therefore, they should be manipulated preferentially in order to obtain optimized TPR profiles. The effect of sample particle size was also investigated. The tests were carried out within a Cu/Zn/Al2O3 catalyst used for the water-gas shift reaction that presented two distinct species of Cu2+ in TPR profiles.
Resumo:
The activity of copper-doped hematite in the SCR with propane, in the presence of oxygen, was evaluated in this work. It was found that copper sulfate led to the production of solids with different specific surface areas depending on the amount of copper. The sulfur and copper species were mainly located on the surface. The copper-containing catalysts were more active in the reduction of nitrogen oxides and less active in the propane oxidation as compared to pure hematite. This behavior was assigned to an association of both sulfur and copper species to produce new sites active for NO reduction.
Resumo:
Vitamin C degradation was evaluated in industrialized cashew juice of high pulp content and in cajuina by the method of Tillmans during eleven days of storage after the opening of the flask. For recently opened juices, vitamin C was found in the concentration range of 112 to 170 mg for 100 g of juice. The degradation of vitamin C in industrialized cashew juices changes when different additives are used. All of the cajuinas presented a vitamin C content below that specified on the label.
Resumo:
We review here the chemistry of reactive oxygen and nitrogen species, their biological sources and targets; particularly, biomolecules implicated in the redox balance of the human blood, and appraise the analytical methods available for their detection and quantification. Those biomolecules are represented by the enzymatic antioxidant defense machinery, whereas coadjutant reducing protection is provided by several low molecular weight molecules. Biomolecules can be injured by RONS yielding a large repertoire of oxidized products, some of which can be taken as biomarkers of oxidative damage. Their reliable determination is of utmost interest for their potentiality in diagnosis, prevention and treatment of maladies.
Resumo:
The reduction kinetics of a CuO/ZnO/Al2O3 catalyst by hydrogen was investigated isothermally and by temperature programmed reduction (TPR). Two reducible Cu2+ species were detected; the first one was identified as CuO bulk and the other as Cu2+ strongly interacting with alumina, possibly in the form of copper aluminate. The activation energies for the reduction of these two species were 60 and 90 kJ mol-1, respectively, and the reaction order with respect to hydrogen was one. The isothermal reduction data showed that the isotropic growth model is the most appropriate to describe the reaction rate data for both Cu2+ species.
Resumo:
In this work we studied the reactivity of isopropylphenylcyclopropenone towards some nitrogen nucleophiles whose reactions with methylphenylcyclopropenone and diphenylcyclopropenone were previously studied. The electrochemical behavior of these cyclopropenones was evaluated for the first time, and a correlation between electrochemical parameters and reactivity of this class of compounds was done.
Resumo:
Reduction of five substituted octalones employing lithium tri-sec-butylborohydride (L-selectride®) in THF and ethyl ether led to allylic alcohols with moderate diastereoselectivity. The stereoselectivity of addition of bulky hydrides showed to be different from most examples in the literature and was strongly influenced by substitution on the octalone ring.
Resumo:
COD is an important parameter to estimate the concentration of organic contaminants. The closed system technique with the use of K2Cr2O7 is the most important one, however, it has the inconvenience to suffer positive chemical interferences from inorganic compounds such as Fe2+ and H2O2 (not enough reported in the literature). This paper considers a statistical-experimental set capable to validate a empirical mathematical model generated from a 23 experimental design, in the presence of Fe2+ and H2O2. The t test shows that mathematical model has 99,99999% confidence degree and the experimental validation test indicates absolute mean error of 4,70%.
Resumo:
In this work, the perovskite-type oxides LaNiO3, LaMnO3, La0,7Sr0,3NiO3 and La0,7Sr0,3MnO3 were prepared by co-precipitation and tested in the NO reduction with CO at 400 and 500 ºC for 10 h. The catalysts were characterized by X-ray diffraction, temperature programmed reduction with hydrogen, nitrogen adsorption and chemical analysis. The nonstoichiometric oxygen was quantified by temperature programmed reduction, and the catalytic tests showed that the La0,7Sr0,3MnO3 catalyst presented the higher performance for the reduction reaction of NO with CO. The partial substitution of lanthanum by strontium increased the NO conversion and the N2 yield.
Resumo:
The decolorization of acid orange 7 azo dye by photolysis and photocatalysis by ZnO was investigated in the presence of oxidants such as NaClO3, NaBrO3, NaIO4, and K2S2O8 in an open reactor at 30 ºC. The decolorization was relatively fast at lower oxidants concentrations and slow rate at larger concentrations, except for persulfate in the photocatalysis. Concerning photolysis the rate constant enhanced gradually, except for chlorate, outreaching the obtained values by photocatalysis, at higher concentrations. The air saturation decreased the rate constant in both processes and indicated that the azo dye can be decolorized without dissolved oxygen in persulfate medium.
Resumo:
The effect of sodium nitrate application in the reduction of biogenic sulphide was evaluated through a 2k complete factorial design, using as variable response the production of sulfide at intervals of incubation of 7, 14 and 28 days. The most effective condition for reducing the sulphide production (final concentrations from 0.4 to 1.6 mg S2- L-1) was obtained with an initial population of sulphate-reducing bacteria and nitrate-reducing bacteria of 10(4) MPN mL-1 and 427.5 mg L-1 nitrate. The results also suggested that the applications of nitrate to control the process of souring should follow a continuous scheme.