195 resultados para insect pathogenic fungi
Resumo:
ABSTRACTWe analyzed the effects of Bacillus sphaericus on Anopheles larvae and on the associated insect fauna in fish farming ponds. Five breeding sites in the peri-urban area of the city of Manaus, AM, Brazil, were studied. Seven samples were collected from each breeding site and B. sphaericus was applied and reapplied after 15 days. The samples were made at 24 h before application, 24 h post-application and 5 and 15 days post-application. We determined abundance, larval reduction and larval density for Anopheles, and abundance, richness, Shannon diversity index and classified according to the functional trophic groups for associated insect fauna. A total of 904 Anopheles larvae were collected and distributed into five species. Density data and larval reduction demonstrated the rapid effect of the biolarvicide 24 h after application. A total of 4874 associated aquatic insects belonging to six orders and 23 families were collected. Regression analysis of diversity and richness indicated that the application of the biolarvicide had no influence on these indices and thus no effect on the associated insect fauna for a period of 30 days. B. sphaericus was found to be highly effective against the larvae of Anopheles, eliminating the larvae in the first days after application, with no effect on the associated insect fauna present in the fish ponds analyzed.
Resumo:
ABSTRACT Insect galls of a protected remnant of the Atlantic Forest tableland from Rio de Janeiro State (Brazil): Galling insects in Rio de Janeiro state are known by their great diversity, despite most of the surveys have been done in restinga. This paper investigated the insect galls from a remnant of Atlantic Forest located in São Francisco de Itabapoana municipality, Rio de Janeiro state, Brazil. The galling insect fauna was surveyed from March, 2013 to April, 2014 at the Estação Ecológica Estadual de Guaxindiba. 143 gall morphotypes were found in 31 plant families, 60 genera and 82 species. Fabaceae, Myrtaceae and Sapindaceae were the main host families, being Trichilia, Tontelea and Eugenia the main host genera. Most galls occured on leaves, with globose shape, green and glabrous. Diptera (Cecidomyiidae), Hemiptera, and Lepidoptera were the inducing orders and the associated fauna comprised parasitoids (Hymenoptera), inquilines (Lepidoptera, Coleoptera, and Hemiptera: Coccoidea), successors (Psocoptera, Collembola and Acari), and predators (Pseudoscorpiones). Three plant genera and nine plant species are recorded for the first time as host of galls in Brazil. All the records are new to the municipality, and the distribution of 15 galling species is extended to the North of the state of Rio de Janeiro.
Resumo:
ABSTRACT The cultivation of genetically modified crops in Brazil has led to the need to assess the impacts of this technology on non-target species. Under field conditions, the potential effect on insect biodiversity was evaluated by comparing a homogeneous corn field with conventional and transgenic maize, expressing different Bt proteins in seven counties of Minas Gerais, Brazil. The richness pattern of non-target insect species, secondary pests and natural enemies were observed. The results do not support the hypothesis that Bt protein affects insect biodiversity. The richness and diversity data of insects studied were dependent on the location and other factors, such as the use of insecticides, which may be a major factor where they are used.
Resumo:
Communities of arbuscular mycorrhizal fungi (AMF) were surveyed in different South Australian ecosystems. The soil was wet-sieved for spore extraction, followed by the determination of presence and abundance of AMF species as well as the percentage of root colonization. Mycorrhizal associations were common and there was substantial fungal diversity in different ecosystems. Spores were most abundant in the permanent pasture system and less abundant under continuous wheat. The incidence of mycorrhizal associations in different plant species and the occurrence of Arum and Paris type colonization generally conformed with previous information. Spores of seventeen AMF were verified throughout seasonal changes in 1996 and 1997 in the permanent pasture and on four host species (Lolium perenne, Plantago lanceolata, Sorghum sp. and Trifolium subterraneum) , set up with the same soils under greenhouse conditions. Glomus mosseae was the dominant spore type at all sampling times and in all trap cultures. Mycorrhizal diversity was significantly affected by different sampling times in trap cultures but not in field-collected soil. P. lanceolata, Sorghum sp. and T. subterraneum as hosts for trap cultures showed no differences in richness and diversity of AMF spores that developed in association with their roots. Abundance and diversity were lowest, however, in association with L. perenne , particularly in December 1996. Results show that the combination of spore identification from field-collected soil and trap cultures is essential to study population and diversity of AMF. The study provides baseline data for ongoing monitoring of mycorrhizal populations using conventional methods and material for the determination of the symbiotic effectiveness of AMF key members.
Resumo:
The rhizomes of Zingiber officinale Roscoe (ginger) are widely used for their medicinal and flavoring properties, whereas the influence of root symbionts on their growth is poorly understood. In this study, the effects of phosphate fertilization and inoculation with a mixture of arbuscular mycorrhizal fungi (AMF) (isolates Glomus clarum RGS101A, Entrophospora colombiana SCT115A and Acaulospora koskei SPL102A) on survival, growth and development of micropropagated ginger were investigated. After transplanting to post vitro conditions, the ginger microplants were subjected to the following treatments: a) AMF mixture, b) P addition (25 mg kg-1), c) AMF + P, and d) non-mycorrhizal control without P addition. After eight months of growth, survival ranged from 86 to 100 % in the AMF and AMF+P treatments versus 71 % survival in control and P treatments. In the AMF, P and AMF+P treatments, the shoot, root and rhizome biomass production were significantly larger than in the control plants. In the non-mycorrhizal control plants the leaf number, leaf area, number of shoots/plants, and shoot length were significantly lower than in the AMF, P and AMF+P treatments. Root colonization ranged from 81 to 93 % and was not affected by P application. The data confirmed the response of several growth variables of micropropagated ginger to mycorrhizal colonization and P addition.
Resumo:
Rhizoctonia-like fungi are the main mycorrhizal fungi in orchid roots. Morphological characterization and analysis of conserved sequences of genomic DNA are frequently employed in the identification and study of fungi diversity. However, phytopathogenic Rhizoctonia-like fungi have been reliably and accurately characterized and identified through the examination of the fatty acid composition. To evaluate the efficacy of fatty acid composition in characterizing and identifying Rhizoctonia-like mycorrhizal fungi in orchids, three Epulorhiza spp. mycorrhizal fungi from Epidendrum secundum, two unidentified fungi isolated from Epidendrum denticulatum, and a phytopathogenic fungus, Ceratorhiza sp. AGC, were grouped based on the profile of their fatty acids, which was assessed by the Euclidian and Mahalanobis distances and the UPGMA method. Dendrograms distinguished the phytopathogenical isolate of Ceratorhiza sp. AGC from the mycorrhizal fungi studied. The symbionts of E. secundum were grouped into two clades, one containing Epulorhiza sp.1 isolates and the other the Epulorhiza sp.2 isolate. The similarity between the symbionts of E. denticulatum and Epulorhiza spp. fungi suggests that symbionts found in E. denticulatum may be identified as Epulorhiza. These results were corroborated by the analysis of the rDNA ITS region. The dendrogram constructed based on the Mahalanobis distance differentiated the clades most clearly. Fatty acid composition analysis proved to be a useful tool for characterizing and identifying Rhizoctonia-like mycorrhizal fungi.
Resumo:
The use of organic fertilizers and the inoculation of mycorrhizal fungi in the cultivation of oil crops is essential to reduce production costs and minimize negative impacts on natural resources. A field experiment was conducted in an Argissolo Amarelo (Ultisol) with the aim of evaluating the effects of fertilizer application and inoculation of arbuscular mycorrhizal fungi on the growth attributes of sunflower (Helianthus annuus L.) and on soil chemical properties. The experiment was conducted at the Federal University of Rio Grande do Norte, Brazil, using a randomized block design with three replicates in a 4 × 2 factorial arrangement consisting of four treatments in regard to application of organic fertilizer (liquid biofertilizer, cow urine, mineral fertilizer, and unfertilized control) and two treatments in regard to arbuscular mycorrhizal fungi (with and without mycorrhizal fungi). The results showed that the physiological attributes of relative growth rate and leaf weight ratio were positively influenced by fertilization, compared to the control treatment, likely brought about by the supply of nutrients from the fertilizers applied. The growth and productivity attributes were positively affected by mycorrhization.
Resumo:
ABSTRACT Ectomycorrhizal fungi (EMF) may improve the adaptation of eucalypts saplings to field conditions and allow more efficient fertilizer use. The effectiveness of EMF inoculum application in promoting fungal colonization, plant growth, nutrient uptake, and the quality of rooted cuttings was evaluated forEucalyptus urophylla under commercial nursery conditions. For inoculated treatments, fertilization of the sapling substrate was reduced by 50 %. The experiment was carried out in a completely randomized design in a 4 × 4 factorial arrangement, wherein the factors were inoculum application rates of 0 (control), 5, 10, and 15 gel beads of calcium alginate containing the vegetative mycelium of Amanita muscaria, Elaphomyces antracinus, Pisolithus microcarpus, andScleroderma areolatum, plus a non-inoculated treatment without fertilization reduction in the substrate (commercial). Ectomycorrhizal fungi increased plant growth and fungal colonization as well as N and K uptake evenly. The best plant growth and fungal colonization were observed for the highest application rate. The greatest growth and fungal colonization and contents of P, N, and K were observed at the 10-bead rate. Plant inoculation with Amanita muscaria, Elaphomyces anthracinus, and Scleroderma areolatum increased P concentrations and contents in a differential manner. The Dickson Quality Index was not affected by the type of fungi or by inoculum application rates. Eucalypt rooted cuttings inoculated with ectomycorrhizal fungi and under half the amount of commercial fertilization had P, N, and K concentrations and contents greater than or equal to those of commercial plants and have high enough quality to be transplanted after 90 days.
Resumo:
With the objective of verifying the response of Euterpe oleracea seedlings to seven arbuscular mycorrhizal fungi species, an experimental trial was carried out under greenhouse conditions. Seeds of E. oleracea were sown in carbonized rice husk. Germinating seeds were initially transferred to plastic cups, containing fumigated Reddish Yellow Quartz Sand and inoculated with arbuscular mycorrhizal fungi. Two months later, seedlings were transferred to 2 kg black plastic bags, containing the same soil without fumigation. Plant growth and mineral nutrients were evaluated nine months after mycorrhizal inoculation. Differential effects were observed among the species tested, with Scutellispora gilmorei being the most effective ones in promoting growth and nutrient content of E. oleracea seedlings. The increment resulted from inoculation with S. gilmorei were 92% in total plant height, 116% in stem diameter, 361% in dry matter production, 191% in N, 664% in P, 46% in K, 562% in Ca, 363% in Mg and 350% in Zn contents, comparing to uninoculated controls. Infected root length was positively correlated to nutrient content and plant growth. It was concluded that growth and nutrient uptake of E. oleracea seedlings could be significantly improved by inoculation of effective arbuscular mycorrhizal fungi.
Resumo:
Compatibility between Eucalyptus dunnii and the ectomycorrhizal fungi Hysterangium gardneri and Pisolithus sp. - from Eucalyptus spp. -, Rhizopogon nigrescens and Suillus cothurnatus - from Pinus spp.-, was studied in vitro. Pisolithus sp., H. gardneri and S. cothurnatus colonized the roots. Pisolithus sp. mycorrhizas presented mantle and Hartig net, while H. gardneri and S. cothurnatus mycorrhizas presented only mantle. S. cothurnatus increased phenolics level on roots. Pisolithus sp. and R. nigrescens decreased the level of these substances. The isolates from Eucalyptus seem to be more compatible towards E. dunnii than those from Pinus. The mechanisms involved could be related, at least in the cases of Pisolithus and Suillus, to the concentration of phenolics in roots.
Resumo:
The objective of this research was to evaluate the effect of the insect resistant soybean genotype IAC 17 on reproductive characteristics of Podisus nigrispinus (Dallas) (Heteroptera: Pentatomidae) females compared to the soybean insect susceptible genotype UFV 16. Treatments were: T1) females of P. nigrispinus fed on plants of the UFV 16 and Anticarsia gemmatalis Hübner (Lepidoptera: Noctuidae) caterpillars reared on leaves of this variety; T2) females of P. nigrispinus fed on plants of the IAC 17 and A. gemmatalis caterpillars reared on leaves of this variety. Longevity of females, pre-oviposition, oviposition and pos-oviposition periods, number of eggs and egg masses/female, egg weight, interval between egg mass laying, number of eggs/egg mass, percentage of nymphs, number of nymphs/female and total number of prey killed/female of P. nigrispinus were evaluated. Most of the characteristics evaluated showed similar results between treatments, but the oviposition period was longer for females reared on the resistant genotype than on the susceptible one and the percentage of total females that laid eggs was lower on the IAC 17. Also, the resistant genotype caused higher mortality of P. nigrispinus females at the beginning of its adult stage and egg production by females of this predator was better spread along its adult stage with this resistant genotype. On the other hand, results suggest no effect of the resistant genotype on the offspring of this predator.
Resumo:
The objective of this study was to characterize the Peruvian isolate of Metarhizium anisopliae var. acridum, CG 863, obtained from the grasshopper Schistocerca interrita, a crop pest in Peru. The characterization was done by comparing this isolate with two other ones of M. anisopliae var. acridum, from Brazil and Australia, and with an isolate of M. anisopliae var. anisopliae. The three M. anisopliae var. acridum isolates had similar growth profiles in agar plates at 25°C and 37°C, and similar RAPD patterns according to the analysis of three primers. However, regarding these parameters and conidial size, these isolates were very distinct when compared to M. anisopliae var. anisopliae isolate. Bioassays indicated that the Peruvian isolate is as pathogenic as the Brazilian isolate against nymphs of Rhammatocerus schistocercoides.
Resumo:
The objective of this work was to evaluate the ability of several P-solubilizing fungi to solubilize aluminum phosphate and Araxá apatite as well as the synergism between the P-solubilizing fungus, PSF 7, and arbuscular mycorrhizal fungi to promote clover growth amended with aluminum phosphate. Two experiments were carried out, the first under laboratory conditions and the second in a controlled environmental chamber. In the first experiment, PSF 7, PSF 9, PSF 21 and PSF 22 isolates plus control were incubated in liquid medium at 28ºC for eight days. On the 2nd, 4th and 8th day of incubation, pH and soluble P were determined. In the second experiment, clover was sowed in plastic pots containing 300 g of sterilized substrate amended with aluminum phosphate, 3 g L-1, in presence and absence of PSF 7 isolate and arbuscular mycorrhizal fungi. A completely randomized design, in factorial outline 2x2 (presence and absence of PSF 7 and arbuscular mycorrhizal fungi) and five replicates were used. In the first experiment, higher P content was detected in the medium containing aluminum phosphate. PSF 7 is the best fungi isolate which increases aluminum solubilization with major tolerance to Al3+. Clover growth was stimulated by presence of PSF 7 and arbuscular mycorrhizal fungi. There is synergism between microorganisms utilized to improve plant nutrition.
Resumo:
The objective of this work was to visualize the association between microcracking and other epidermal chilling injury symptoms, and to identify rots in cucumber fruit (Cucumis sativus L.) by scanning electron microscopy (SEM). Depressed epidermal areas and surface cracking due to damages of subepidermal cells characterized the onset of pitting in cucumber fruit. The germination of conidia of Alternaria alternata, with some of them evident on the fractures in the cultivar Trópico, occurred after damaging on the epidermis. Before, the chilling injury symptoms became visible, Stemphylium herbarum conidia germinated, and mycelium penetrated through the hypodermis using the microcracks as pathway. In the cultivar Perichán 121 the fungus was identified as Botrytis cinerea.
Resumo:
The objective of this work was to evaluate the efficiency of ectomycorrhizal isolates on root colonization, phosphorus uptake and growth of Eucalyptus dunnii seedlings. Inocula of ten ectomycorrhizal isolates of Chondrogaster angustisporus, Hysterangium gardneri, Pisolithus spp., and Scleroderma spp. were aseptically produced in a peat-vermiculite mixture supplemented with liquid culture medium. Plants grew in a similar substrate supplemented with macro-and micro-nutrients; treatments were randomly distributed in a greenhouse. After three months, seedlings inoculated with three isolates - UFSC-Sc68 (Scleroderma sp.), UFSC-Ch163 (Chondrogaster angustisporus), and UFSC-Pt188 (Pisolithus microcarpus) - had a phosphorus shoot content and a shoot dry matter higher or equivalent to those of noninoculated controls which had been fertilized with a 16-fold phosphorus amount. These isolates were selected for new studies for establishing inoculum production techniques, in order to be applied in reforestation programmes under nursery and field conditions.