248 resultados para gastrointestinal mucosa protective agent
Resumo:
Portal hypertension is a frequent complication of chronic liver disease, detected not only in schistosomiasis, but also in cirrhosis of any etiology. Vascular alterations in the colonic mucosa are a potential source for acute or chronic bleeding and have been observed in patients with portal hypertension. The purpose of this prospective study was to describe and propose a classification for the vascular alterations of portal hypertension in the colonic mucosa among patients with hepatosplenic schistosomiasis mansoni. One or more alterations of portal colopathy were observed in all patients and they were classified according to their intensity, obeying the classification proposed by the authors. Portal colopathy is an important finding in hepatosplenic schistosomiasis and might be the cause of lower gastrointestinal bleeding in patients with severe portal hypertension.
Resumo:
The intestinal epithelium plays a crucial role in providing a barrier between the external environment and the internal milieu of the body. A compromised mucosal barrier is characteristic of mucosal inflammation and is a key determinant of the development of intestinal diseases such as Crohn's disease and ulcerative colitis. The intestinal epithelium is regularly exposed to serine proteinases and this exposure is enhanced in numerous disease states. Thus, it is important to understand how proteinase-activated receptors (PARs), which are activated by serine proteinases, can affect intestinal epithelial function. This review surveys the data which demonstrate the wide distribution of PARs, particularly PAR-1 and PAR-2, in the gastrointestinal tract and accessory organs, focusing on the epithelium and those cells which communicate with the epithelium to affect its function. PARs have a role in regulating secretion by epithelia of the salivary glands, stomach, pancreas and intestine. In addition, PARs located on subepithelial nerves, fibroblasts and mast cells have important implications for epithelial function. Recent data outline the importance of the cellular site of PAR expression, as PARs expressed on epithelia may have effects that are countered by PARs expressed on other cell types. Finally, PARs and their ability to promote epithelial cell proliferation are discussed in terms of colon cancer.
Resumo:
Among all infectious diseases that afflict humans, tuberculosis (TB) remains the deadliest. At present, epidemiologists estimate that one-third of the world population is infected with tubercle bacilli, which is responsible for 8 to 10 million new cases of TB and 3 million deaths annually throughout the world. Approximately 95% of new cases and 98% of deaths occur in developing nations, generally due to the few resources available to ensure proper treatment and where human immunodeficiency virus (HIV) infections are common. In 1882, Dr Robert Koch identified an acid-fast bacterium, Mycobacterium tuberculosis, as the causative agent of TB. Thirty-nine years later, BCG vaccine was introduced for human use, and became the most widely used prophylactic strategy to fight TB in the world. The discovery of the properties of first-line antimycobacterial drugs in the past century yielded effective chemotherapies, which considerably decreased TB mortality rates worldwide. The later introduction of some additional drugs to the arsenal used to treat TB seemed to provide an adequate number of effective antimicrobial agents. The modern, standard short-course therapy for TB recommended by the World Health Organization is based on a four-drug regimen that must be strictly followed to prevent drug resistance acquisition, and relies on direct observation of patient compliance to ensure effective treatment. Mycobacteria show a high degree of intrinsic resistance to most antibiotics and chemotherapeutic agents due to the low permeability of its cell wall. Nevertheless, the cell wall barrier alone cannot produce significant levels of drug resistance. M. tuberculosis mutants resistant to any single drug are naturally present in any large bacterial population, irrespective of exposure to drugs. The frequency of mutants resistant to rifampicin and isoniazid, the two principal antimycobacterial drugs currently in use, is relatively high and, therefore, the large extra-cellular population of actively metabolizing and rapidly growing tubercle bacilli in cavitary lesions will contain organisms which are resistant to a single drug. Consequently, monotherapy or improperly administered two-drug therapies will select for drug-resistant mutants that may lead to drug resistance in the entire bacterial population. Thereby, despite the availability of effective chemotherapy and the moderately protective vaccine, new anti-TB agents are urgently needed to decrease the global incidence of TB. The resumption of TB, mainly caused by the emergence of multidrug-resistant (MDR) and extensively drug-resistant (XDR) strains and HIV epidemics, led to an increased need to understand the molecular mechanisms of drug action and drug resistance, which should provide significant insight into the development of newer compounds. The latter should be effective to combat both drug-susceptible and MDR/XDR-TB.
Resumo:
In a recent outbreak of human ocular injuries that occurred in the town of Araguatins, at the right bank of Araguaia river, state of Tocantins, Brazil, along the low water period of 2005, two patients (8 and 12-year-old boys) presented inferior adherent leukoma in the left eye (OS), and peripherical uveites, with snowbanking in the inferior pars plana. The third one (13-year-old girl) showed posterior uveites in OS, also with snowbanking. Histopathological analysis of lensectomy material from the three patients and vitrectomy from the last one revealed several silicious spicules (gemmoscleres) of the freshwater sponges Drulia uruguayensis and D. ctenosclera. This work brings material evidences, for the first time in the literature, that freshwater sponge spicules may be a surprising new etiological agent of ocular pathology.
Resumo:
In a previous study, the Schistosoma mansoni Rho1 protein was able to complement Rho1 null mutant Saccharomyces cerevisiae cells at restrictive temperatures and under osmotic stress (low calcium concentration) better than the human homologue (RhoA). It is known that under osmotic stress, the S. cerevisiae Rho1 triggers two distinct pathways: activation of the membrane 1,3-beta-glucan synthase enzymatic complex and activation of the protein kinase C1 signal transduction pathway, promoting the transcription of response genes. In the present work the SmRho1 protein and its mutants smrho1E97P, smrho1L101T, and smrho1E97P, L101T were used to try to clarify the basis for the differential complementation of Rho1 knockout yeast strain by the human and S. mansoni genes. Experiments of functional complementation in the presence of caffeine and in the presence of the osmotic regulator sorbitol were conducted. SmRho1 and its mutants showed a differential complementation of the yeast cells in the presence of caffeine, since smrho1E97P and smrho1E97P, L101T mutants showed a delay in the growth when compared to the yeast complemented with the wild type SmRho1. However, in the presence of sorbitol and caffeine the wild type SmRho1 and mutants showed a similar complementation phenotype, as they allowed yeast growth in all caffeine concentrations tested.
Resumo:
The thrombospondin related adhesion protein (TRAP) is a malaria pre-erythrocytic antigen currently pursued as malaria vaccine candidate to Plasmodium falciparum. In this study, a long synthetic peptide (LSP) representing a P. vivax TRAP fragment involved in hepatocyte invasion was formulated in both Freund and Montanide ISA 720 adjutants and administered by IM and subcutaneous routes to BALB/c mice and Aotus monkeys. We measured specific humoral immune responses in both animal species and performed a sporozoite challenge in Aotus monkeys to assess the protective efficacy of the vaccine. After immunization both mice and Aotus seroconverted as shown by ELISA, and the specific anti-peptide antibodies cross reacted with the parasite in IFAT assays. Only two out of six immunized animals became infected after P. vivax sporozoite challenge as compared with four out of six animals from the control group. These results suggest that this TRAP fragment has protective potential against P. vivax malaria and deserves further studies as vaccine candidate.
Resumo:
Studies on concomitant schistosomiasis and human and experimental malaria have shown a variation in the immunospecific response, as well as an increase in the severity of both parasitoses. In the present study, a murine co-infection model was used to determine the effects of a co-infection with Schistosoma mansoni and Plasmodium berghei on the protective immunity acquired by repeated malarial infections and subsequent curative treatment with chloroquine. Our results have demonstrated that, compared to an infection with P. berghei only, the co-infection increases the malarial parasitaemia and decreases the survival rate. Indeed, mice that were immunized by infection and treatment with drug displayed no mortality whereas co-infected mice showed a reduced protective efficacy of immunization against P. berghei (mortality > 60%). Interestingly, this high mortality rate was not associated with high levels of parasitaemia. Our findings support the idea of a suppressive effect of a Schistosoma co-infection on the anti-malarial protection by immunization. This result reveals a possible drawback of the development of anti-malarial vaccines, especially considering the wide endemic areas for both parasitoses.
Resumo:
Perhaps one of the most intriguing aspects of human Chagas disease is the complex network of events that underlie the generation of protective versus pathogenic immune responses during the chronic phase of the disease. While most individuals do not develop patent disease, a large percentage may develop severe forms that eventually lead to death. Although many efforts have been devoted to deciphering these mechanisms, there is still much to be learned before we can fully understand the pathogenesis of Chagas disease. It is clear that the host's immune response is decisive in this process. While characteristics of the parasite influence the immune response, it is becoming evident that the host genetic background plays a fundamental role in the establishment of pathogenic versus protective responses. The involvement of three complex organisms, host, parasite and vector, is certainly one of the key aspects that calls for multidisciplinary approaches towards the understanding of Chagas disease. We believe that now, one hundred years after the discovery of Chagas disease, it is imperative to continue with highly interactive research in order to elucidate the immune response associated with disease evolution, which will be essential in designing prophylactic or therapeutic interventions.
Resumo:
Upon infection, Trypanosoma cruzi triggers a strong immune response that has both protective and pathological consequences. In this work, several important questions regarding protective immunity are reviewed. Emphasis is placed on recent studies of the important protective role of CD8+ T cells and on previous studies of immunisation of domestic T. cruzi reservoirs that sought to address practical vaccination problems. Research on the maturation of memory cells and studies indicating that the prevalence of T. cruzi-specific T-cell responses and a high frequency of committed CD8+ T cells are associated with better clinical outcomes are also reviewed. Additionally, animal models in which protection was achieved without immunopathological consequences are discussed.
Resumo:
Human rhinoviruses (HRV) are usually associated with mild respiratory symptoms in children. However, some studies have found that HRV can cause severe disease, especially when the patient is co-infected with a second virus. In this study, 532 nasopharyngeal aspirates (NPAs) were collected over a nine-year period from children at the Clinics Hospital of Uberlândia. The collected NPAs were then tested for HRV RNA using the reverse transcription-polymerase chain reaction. Eighty-three specimens from children diagnosed with lower respiratory tract illness (LRTI) were positive for HRV RNA and were then tested for the presence of eight other respiratory viruses. A second virus was detected in 37.3% (31/83) of the samples. The most frequent clinical diagnosis was bronchiolitis, followed by other LRTI and then pneumonia. The frequency of severe disease in children infected with more than one virus was not significantly different from the frequency of severe disease in children infected with HRV alone. Children infected with both HRV and parainfluenza virus (1.5 m.o.) were significantly younger than those infected by HRV alone (5.0 m.o.) (p = 0.0454). Overall, these results suggest that infection with a second virus does not lead to a higher frequency of severe syndromes in children presenting with LRTI.
Resumo:
The histo-blood group ABH antigens were first described in humans. These antigens are only present on erythrocytes from great apes and humans, while in more primitive animals they are found in tissues and body fluids. The ABH antigens are mainly distributed in tissues exposed to the external environment and potentially serve as ligands for pathogens or inhibitors of tissue connections. The objective of this paper was two-fold: (i) to determine the presence of Helicobacter sp. in the gastric mucosa of 16 captive and 24 free-living New World monkeys and (ii) to evaluate the presence of histopathological alterations related to bacterial infection and the associated expression of ABH antigens in the tissue. Stomach tissues from 13 species of monkey were assessed using haematoxylin-eosin and modified Gram staining (Hucker) methods. An immunohistochemical analysis of the tissue revealed the presence of infectious bacteria that were characteristic of the genus Helicobacter sp. The results demonstrate that various species of monkey might be naturally infected with the Helicobacter sp. and that there is an increased susceptibility to infection. This study serves as a comparative analysis of infection between human and non-human primates and indicates the presence of a new species of Helicobacter.
Resumo:
CD8+ T cells against malaria liver stages represent a major protective immune mechanism against infection. Following induction in the peripheral lymph nodes by dendritic cells (DCs), these CD8+ T cells migrate to the liver and eliminate parasite infected hepatocytes. The processing and presentation of sporozoite antigen requires TAP mediated transport of major histocompatibility complex class I epitopes to the endoplasmic reticulum. Importantly, in DCs this process is also dependent on endosome-mediated cross presentation while this mechanism is not required for epitope presentation on hepatocytes. Protective CD8+ T cell responses are strongly dependent on the presence of CD4+ T cells and the capacity of sporozoite antigen to persist for a prolonged period of time. While human trials with subunit vaccines capable of inducing antibodies and CD4+ T cell responses have yielded encouraging results, an effective anti-malaria vaccine will likely require vaccine constructs designed to induce protective CD8+ T cells against malaria liver stages.
Resumo:
The lack of immunogenicity of most malaria antigens and the complex immune responses required for achieving protective immunity against this infectious disease have traditionally hampered the development of an efficient human malaria vaccine. The current boom in development of recombinant viral vectors and their use in prime-boost protocols that result in enhanced immune outcomes have increased the number of malaria vaccine candidates that access pre-clinical and clinical trials. In the frontline, adenoviruses and poxviruses seem to be giving the best immunization results in experimental animals and their mutual combination, or their combination with recombinant proteins (formulated in adjuvants and given in sequence or being given as protein/virus admixtures), has been shown to reach unprecedented levels of anti-malaria immunity that predictably will be somehow reproduced in the human setting. However, all this optimism was previously seen in the malaria vaccine development field without many real applicable results to date. We describe here the current state-of-the-art in the field of recombinant adenovirus research for malaria vaccine development, in particular referring to their use in combination with other immunogens in heterologous prime-boost protocols, while trying to simultaneously show our contributions and point of view on this subject.
Resumo:
Coxiella burnetii is the agent of Q fever , an emergent worldwide zoonosis of wide clinical spectrum. Although C. burnetii infection is typically associated with acute infection, atypical pneumonia and flu-like symptoms, endocarditis, osteoarticular manifestations and severe disease are possible, especially when the patient has a suppressed immune system; however, these severe complications are typically neglected. This study reports the sequencing of the repetitive element IS1111 of the transposase gene of C. burnetii from blood and bronchoalveolar lavage (BAL) samples from a patient with severe pneumonia following methotrexate therapy, resulting in the molecular diagnosis of Q fever in a patient who had been diagnosed with active seronegative polyarthritis two years earlier. To the best of our knowledge, this represents the first documented case of the isolation of C. burnetii DNA from a BAL sample.