182 resultados para eletroforese em gel de poliacrilamida
Resumo:
This work describes the development of a home-made capillary electrophoresis (CE) system based on the capacitively coupled contactless conductivity detection (C4D) for the separation of the metallic species Zn2+, Cr3+, Pb2+, Cd2+, Co2+, Cu2+, Ni2+ e Tl+. A background electrolyte composed of MES/Histidine 0,02 mol L-1 (pH 5.0) was optimized for the separation of the metallic species by using organic solvents and complexing agents as additives. The system allowed the determination of the metallic species using MES/Histidine 0,02 mol L-1 and methanol 5% (pH 5.0) as a background electrolyte, 15 kV separation voltage and hydrodynamic injection by gravity.
Resumo:
Argentation chromatography is used to increase the selectivity of the chromatographic process, chiefly in the resolution of complex mixtures of nonpolar substances. Although efficient, this technique generates residues containing heavy metal which makes its discarding through common procedures impracticable. In the present work a simple method for recycling of silica, and also silver, from argentation chromatography is described. This procedure uses initially a treatment of H2O2/HNO3, with subsequent treatment with H2O2/H2SO4 , allowing an efficient recycling of both components. This methodology is simple, costless, removes impurities efficiently, and does not modify retention parameters nor specific surface in a significant way.
Resumo:
The present work purposes the preparation of a silica gel sorbent organically modified with 2-aminoethyl-3-aminobutylmethyldimethoxysilane (AAMDMS) and imprinted with Cu2+ ions by means surface imprinting technique and its use for selective on-line sorbent preconcentration of Cu2+ ions with further UV-VIS spectrophotometric determination by flow injection analysis. The Cu2+-imprinted silica gel, when compared with non imprinted silica gel and silica gel, showed from the binary mixture of Cu2+/Ni2+ relative selectivity coefficient (k') of 6.84 and 5.43 and 6.64 and 19.83 for the mixture Cu2+/Pb2+, thus demonstrating higher selectivity of Cu2+-imprinted silica gel towards Cu2+ ions. Under optimized condition, the on-line preconcentration method provided detection limit of 3.4 μg L-1 and linear range ranging from 30.0 up to 300.0 μg L-1 (r = 0.995). The accuracy of method was successfully assessed by analyzing different kind of spiked water samples with recovery values ranging from 92.2 up to 103.0%.
Resumo:
This work describes CE preconcentration strategies based on the effect of manipulation of the disperse/secondary velocity. Introduced by Terabe et al. in 1984, micellar electrokinetic chromatography is a powerful separation approach that increases the usage of electrokinetic phenomena for the separation of nonionic compounds. The main disadvantage of MEKC is the low concentration sensitivity associated with the limited optical path length for on-capillary photometric detection and the limited volume of sample solution that can be injected. This paper compiles on-line concentration strategies for neutral analytes by sample stacking and sweeping in micellar electrokinetic chromatography.
Resumo:
This paper presents a study on the production of silica gel in hydrothermal process using residual rice husk ash. Measurements of the chemical composition, X-ray diffraction, infrared spectroscopy, particle size distribution, and pozzolanic activity were carried out in order to characterize the obtained material, and the optimal silica gel was selected for use as a mineral additive in cement pastes. The compressive strengths were determined for cement pastes containing silica gel (0.0, 2.5 or 5% by mass) in different times. The results indicate that the mixtures containing silica gel showed improved mechanical behavior over all time periods evaluated.
Resumo:
This work aimed at the synthesis and characterization of particles of modified silica containing the organic filter dibenzoylmethane (DBM) by the hydrolytic sol-gel method, with modifications to the Stöber route. The structures of the resulting Xerogels were characterized by diffuse reflectance UV-VIS spectroscopy in the solid state, infrared absorption spectroscopy, Scanning Electron Microscopy (SEM) and 29Si Nuclear Magnetic Resonance (29Si NRM). The results showed favorable formation of hybrid organic-inorganic nanoparticles with efficient absorption/reflectance of radiation in the UV / VIS range, which enables their potential use as sunscreen.
Resumo:
In this work, a rapid and simple method using capillary electrophoresis (CE) was developed for the determination of the benzoate, sorbate, methyl and propylparaben in foodstuffs. A running buffer consisting of 20 mmol L-1 (pH = 9.3) tetraborate enabled separation of the analytes in less than 5 min. The detector wavelength was set at 220 nm. The method was successfully applied to the analysis of sodas, sweeteners, sauces and juices. The range of preservatives found were from 478.5-466.6 mg kg-1 for methylparaben , 83.7-231.3 mg kg-1 for sorbate and 336.7-428.3 mg kg-1 for benzoate.
Resumo:
Indium tin oxide nanoparticles were synthesized in two different sizes by a nonhydrolytic sol-gel method. These powders were then transformed into ITO via an intermediate metastable state at between 300 and 600 ºC. The presence of characteristic O-In-O and O-Sn-O bands at 480 and 670 cm-1 confirmed the formation of ITO. The X-ray diffraction patterns indicated the preferential formation of metastable hexagonal phase ITO (corundum type) as opposed to cubic phase ITO when the reflux time was less than 3 h and the heat treatment temperature was below 600 ºC. Particle morphology and crystal size were examined by scanning electron microscopy.
Resumo:
This work presents biochemical characterization of a lipase from a new strain of Bacillus sp. ITP-001, immobilized using a sol gel process (IB). The results from the biochemical characterization of IB showed increased activity for hydrolysis, with 526.63 U g-1 at pH 5.0 and 80 ºC, and thermal stability at 37 ºC. Enzymatic activity was stimulated by ions such as EDTA, Fe+3, Mn+2, Zn+2, and Ca+2, and in various organic solvents. Kinetic parameters obtained for the IB were Km = 14.62 mM, and Vmax = 0.102 mM min-1 g-1. The results of biochemical characterization revealed the improved catalytic properties of IB.
Resumo:
The influence of the composition and preparation method on the sol-gel transition temperature (Tsol-gel) and rheological response of poloxamer-based formulations was determined. Manual and more complex mechanical stirring were found to provide similar results. In addition, a linear dependence of Tsol-gel on the poloxamer content was observed in the range of concentrations analyzed, and a Poloxamer 407® concentration of 18% was selected. The addition of hyaluronic acid did not lead to significant changes in the Tsol-gel values. In contrast, the addition of microparticles caused a reduction in Tsol-gel without a significant reduction in gel strength, and pseudoplastic characteristics were observed, indicating that a thermoreversible gel was obtained with a rheology suitable for application in the treatment of burn wounds.
Resumo:
The immobilization of enzymes and microorganisms on solid supports has been developed in recent years. These biocatalysts may be used in organic media allowing their storage and reuse, thus reducing costs of the process. Herein, lipases from various sources were immobilized in agar gel and used as catalysts in the chemo-enzymatic epoxidation of β-caryophyllene. Several experimental parameters, such as the use of different organic solvents including ionic liquids, time, temperature, and agitation rate were evaluated. The mono-epoxide was obtained as a single product. The best result was achieved using immobilized F-AP15 lipase, forming the corresponding β-caryophyllene epoxide at a conversion of 96% in an 8h reaction at 35 ºC.
Resumo:
In this paper, a silica-gel-modified carbon paste electrode (Si-gel/CPE) was used to determine the anti-cancer drug emodin by anodic stripping differential pulse voltammetry (ASDPV). The effects of the silica-gel content, the pH of the supporting electrolyte, and the scan rate on the oxidation current of emodin were investigated. The oxidation currents of emodin obtained from ASDPV measurements were linearly correlated with the concentration in the range of 5.0 × 10-9 to 300.0 × 10-9 mol L-1. The limit of detection was determined to be 1.5 × 10-9 mol L-1. The current method was successfully applied to determine emodin in a knotweed root sample, with recovery rate of 92.5% to 98.3%.
Resumo:
The filling of capillaries via the sol-gel process is growing. Therefore, this technical note focuses on disseminating knowledge acquired in the Group of Analytical Chemistry and Chemometrics over seven years working with monolithic stationary phase preparation in fused silica capillaries. We believe that the detailed information presented in this technical note concerning the construction of an alternative high pressurization device, used to fill capillary columns via the sol-gel process, which has promising potential for applications involving capillary electrochromatography and liquid chromatography in nano scale, may be enlightening and motivating for groups interested in developing research activities within this theme.
Resumo:
The objective of this work was the immobilization of the enzyme Candida antarctica lipase B (CAL B) using the sol-gel method of immobilization and three different initiators of the polymerization reaction: one acid (HCl), one basic (NH4OH) and the other nucleophilic (HBr). Tetraethylorthosilicate was used as the silica precursor. The influence of the additive PEG 1500 on immobilization was assessed. The efficiency of the process was evaluated considering the esterification activity of the xerogels. The immobilization process provided enhanced thermal stability, storage and operational aspects relative to the free enzyme. Storage temperature proved one of the main variables to be considered in the process, with the xerogels stored under refrigeration showing better results in terms of residual activity (nearly 200 days with ≥ 90% residual activity of basic and nucleophilic xerogels) when compared with storage at ambient temperature (nearly 40 days). The results demonstrated the possibility of reuse of derivatives and a greater number of cycles (nine), considering a residual activity of 50%.
Resumo:
Ni-Co/Al2O3-MgO-ZrO2 nanocatalyst with utilization of two different zirconia precursors, namely, zirconyl nitrate hydrate (ZNH) and zirconyl nitrate solution (ZNS), was synthesized via the sol-gel method. The physiochemical properties of nanocatalysts were characterized by XRD, FESEM, EDX, BET and FTIR analyses and employed for syngas production from CO2-reforming of CH4. XRD patterns, exhibiting proper crystalline structure and homogeneous dispersion of active phase for the nanocatalyst ZNS precursor employed (NCAMZ-ZNS). FESEM and BET results of NCAMZ-ZNS presented more uniform morphology and smaller particle size and consequently higher surface areas. In addition, average particle size of NCAMZ-ZNS was 15.7 nm, which is close to the critical size for Ni-Co catalysts to avoid carbon formation. Moreover, FESEM analysis indicated both prepared samples were nanoscale. EDX analysis confirmed the existence of various elements used and also supported the statements made in the XRD and FESEM analyses regarding dispersion. Based on the excellent physiochemical properties, NCAMZ-ZNS exhibited the best reactant conversion across all of the evaluated temperatures, e.g. CH4 and CO2 conversions were 97.2 and 99% at 850 ºC, respectively. Furthermore, NCAMZ-ZNS demonstrated a stable yield with H2/CO close to unit value during the 1440 min stability test.