173 resultados para bites in humans
Resumo:
The contributions of cytokines to the development and progression of disease in a mouse model of retrovirus-induced immunodeficiency (MAIDS) are controversial. Some studies have indicated an etiologic role for type 2 cytokines, while others have emphasized the importance of type 1 cytokines. We have used mice deficient in expression of IL-4, IL-10, IL-4 and IL-10, IFN-g, or ICSBP - a transcriptional protein involved in IFN signaling - to examine their contributions to this disorder. Our results demonstrate that expression of type 2 cytokines is an epiphenomenon of infection and that IFN-g is a driving force in disease progression. In addition, exogenously administered IL-12 prevents many manifestations of disease while blocking retrovirus expression. Interruption of the IFN signaling pathways in ICSBP-/- mice blocks induction of MAIDS. Predictably, ICSBP-deficient mice exhibit impaired responses to challenge with several other viruses. This immunodeficiency is associated with impaired production of IFN-g and IL-12. Unexpectedly, however, the ICSBP-/- mice also develop a syndrome with many similarities to chronic myelogenous leukemia in humans. The chronic phase of this disease is followed by a fatal blast crisis characterized by clonal expansions of undifferentiated cells. ICSBP is thus an important determinant of hematopoietic growth and differentiation as well as a prominent signaling molecule for IFNs
Resumo:
The clinical spectrum of leishmaniasis and control of the infection are influenced by the parasite-host relationship. The role of cellular immune responses of the Th1 type in the protection against disease in experimental and human leishmaniasis is well established. In humans, production of IFN-g is associated with the control of infection in children infected by Leishmania chagasi. In visceral leishmaniasis, an impairment in IFN-g production and high IL-4 and IL-10 levels (Th2 cytokines) are observed in antigen-stimulated peripheral blood mononuclear cells (PBMC). Moreover, IL-12 restores IFN-g production and enhances the cytotoxic response. IL-10 is the cytokine involved in down-regulation of IFN-g production, since anti-IL-10 monoclonal antibody (mAb) restores in vitro IFN-g production and lymphoproliferative responses, and IL-10 abrogates the effect of IL-12. In cutaneous and mucosal leishmaniasis, high levels of IFN-g are found in L. amazonensis-stimulated PBMC. However, low or absent IFN-g levels were observed in antigen-stimulated PBMC from 50% of subjects with less than 60 days of disease (24 ± 26 pg/ml). This response was restored by IL-12 (308 ± 342 pg/ml) and anti-IL-10 mAb (380 ± 245 pg/ml) (P<0.05). Later during the disease, high levels of IFN-g and TNF-a are produced both in cutaneous and mucosal leishmaniasis. After treatment there is a decrease in TNF-a levels (366 ± 224 pg/ml before treatment vs 142 ± 107 pg/ml after treatment, P = 0.02). Although production of IFN-g and TNF-a might be involved in the control of parasite multiplication in the early phases of Leishmania infection, these cytokines might also be involved in the tissue damage seen in tegumentary leishmaniasis
Resumo:
Bothrops erythromelas is responsible for many snake bites in northeastern Brazil. In the present study we determined the in vivo distribution of the venom following its subcutaneous injection into mice. B. erythromelas venom and albumin were labeled individually with 131I by the chloramine T method, and separated in a Sephacryl® S-200 column. The efficiency of labeling was 68%. Male Swiss mice (40-45 g), which had been provided with drinking water containing 0.05% KI over a period of 10 days prior to the experiment, were inoculated dorsally (sc) with 0.3 ml (2.35 x 105 cpm/mouse) of 131I-venom (N = 42), 131I-albumin or 131I (controls, N = 28 each). Thirty minutes and 1, 3, 6, 12, 18 and 24 h after inoculation, the animals were perfused with 0.85% NaCl and skin and various organs were collected in order to determine radioactivity content. There was a high rate of venom absorption in the skin (51%) within the first 30 min compared to albumin (20.1%) and free iodine (8.2%). Up to the third hour after injection there was a tendency for venom and albumin to concentrate in the stomach (3rd h), small intestine (3rd h) and large intestine (6th h). Both control groups had more radioactivity in the digestive tract, especially in the stomach, but these levels decreased essentially to baseline by 12-18 h postinjection. In the kidneys, the distribution profiles of venom, albumin and iodine were similar. Counts at 30 min postinjection were low in all three groups (1.37, 1.86 and 0.77, respectively), and diminished to essentially 0% by 12-18 h. Albumin tended to concentrate in muscle until the 3rd h postinjection (1.98%). There was a low binding of labeled venom in the liver (<0.54%), thyroid (<0.11%) and lungs (<0.08%), and no iodinated venom was detected in brain, heart, diaphragm, spleen or bladder. The low venom binding observed in most internal organs, comparable to that of albumin, suggests that B. erythromelas venom does not specifically target most internal organs. That is, the systemic effects of envenomation are mainly due to an indirect action
Resumo:
Six hundred million people are at risk of infection by Schistosoma mansoni. MHC haplotypes have been reported to segregate with susceptibility to schistosomiasis in murine models. In humans, a major gene related to susceptibility/resistance to infection by S. mansoni (SM1) and displaying the mean fecal egg count as phenotype was detected by segregation analysis. This gene displayed a codominant mode of inheritance with an estimated frequency of 0.20-0.25 for the deleterious allele and accounted for more than 50% of the variance of infection levels. To determine if the SM1 gene segregates with the human MHC chromosomal region, we performed a linkage study by the lod score method. We typed for HLA-A, B, C, DR and DQ antigens in 11 informative families from an endemic area for schistosomiasis in Bahia, Brazil, by the microlymphocytotoxicity technique. HLA-DR typing by the polymerase chain reaction with sequence-specific primers (PCR-SSP) and HLA-DQ were confirmed by PCR-sequence-specific oligonucleotide probes (PCR-SSOP). The lod scores for the different q values obtained clearly indicate that there is no physical linkage between HLA and SM1 genes. Thus, susceptibility or resistance to schistosomiasis, as defined by mean fecal egg count, is not primarily dependent on the host's HLA profile. However, if the HLA molecule plays an important role in specific immune responses to S. mansoni, this may involve the development of the different clinical aspects of the disease such as granuloma formation and development of hepatosplenomegaly.
Resumo:
Heart rate variability is a relevant predictor of cardiovascular risk in humans. A significant genetic influence on heart rate variability is suggested, although the genes involved are ill-defined. The Mas-protooncogene encodes a G-protein-coupled receptor with seven transmembrane domains highly expressed in testis and brain. Since this receptor is supposed to interact with the signaling of angiotensin II, which is an important regulator of cardiovascular homeostasis, heart rate and blood pressure were analyzed in Mas-deficient mice. Using a femoral catheter the blood pressure of mice was measured for a period of 30 min and 250 data values per second were recorded. The mean values and range of heart rate and blood pressure were then calculated. Neither heart rate nor blood pressure were significantly different between knockout mice and controls. However, high resolution recording of these parameters and analysis of the data by non-linear dynamics revealed significant alterations in cardiovascular variability in Mas-deficient animals. In particular, females showed a strong reduction of heart rate variability. Furthermore, the data showed an increased sympathetic tone in knockout animals of both genders. The marked alterations detected in Mas-deficient mice of both genders suggest that the Mas-protooncogene is an important determinant of heart rate and blood pressure variability.
Resumo:
Rotaviruses are the major cause of viral diarrhea in humans and animals. Actinomycin D (Act D) is an antibiotic that intercalates DNA and therefore inhibits DNA-dependent transcription. The current study was carried out to assess the influence of Act D on the replication of simian rotavirus (SA11) in cell culture. Virus-infected MA-104 cell cultures were studied in the presence of Act D at concentrations of 1.25 and 2.5 µg/ml. Treatment of rotavirus-infected cells with 2.5 µg/ml Act D 48 h post-infection reduced the cytoplasmic metachromasia after staining with acridine orange by 25%. Viral RNA labeled with ³H-uridine in the presence of the drug was separated by polyacrylamide gel electrophoresis. Viral RNA replication was not affected by Act D, but increased ³H-uridine uptake was demonstrable by infected cells in the presence of the drug. This possibly was due to the inhibition of cellular RNA synthesis by Act D, which thus enhances incorporation of the radionuclide into the viral RNA. Act D reduced the number of infected cells presenting virus-specific fluorescence 48 h post-infection by more than 50%. These data suggest that Act D may have complexed with viral RNA and prevented newly synthesized mRNA from being translated, but may not have prevented early replication.
Resumo:
Data obtained during the past five years have indicated that there are important age- and gender-based differences in the regulation and action of leptin in humans. To study the physiological changes of leptin during puberty in both sexes, and its relationship with body composition and sexual maturation, we measured leptin concentrations in 175 healthy adolescents (80 girls, 95 boys, 10-18 years of age), representing all pubertal stages. We excluded individuals with a body mass index (BMI) below the 5thor above the 95th percentile relative to age. Serum concentrations of leptin were determined by a monoclonal antibody-based immunofluorimetric assay, developed in our laboratory. Body composition was determined by dual-energy X-ray absorptiometry. Pubertal stage was assigned by physical examination, according to Tanner criteria for breast development in females and genital development in males. Leptin concentration in girls (N = 80) presented a positive linear correlation with age (r = 0.35, P = 0.0012), BMI (r = 0.65, P < 0.0001) and %fat mass (r = 0.76, P < 0.0001). In boys (N = 95) there was a positive correlation with BMI (r = 0.49, P < 0.0001) and %fat mass (r = 0.85, P < 0.0001), but a significant negative linear correlation with Tanner stage (r = -0.45, P < 0.0001) and age (r = -0.40, P < 0.0001). The regression equation revealed that %fat mass and BMI are the best parameters to be used to estimate leptin levels in both sexes. Thus, the normal reference ranges for circulating leptin during adolescence should be constructed according to BMI or %fat mass to assure a correct evaluation.
Resumo:
Exercise training associated with robust conditioning can be useful for the study of molecular mechanisms underlying exercise-induced cardiac hypertrophy. A swimming apparatus is described to control training regimens in terms of duration, load, and frequency of exercise. Mice were submitted to 60- vs 90-min session/day, once vs twice a day, with 2 or 4% of the weight of the mouse or no workload attached to the tail, for 4 vs 6 weeks of exercise training. Blood pressure was unchanged in all groups while resting heart rate decreased in the trained groups (8-18%). Skeletal muscle citrate synthase activity, measured spectrophotometrically, increased (45-58%) only as a result of duration and frequency-controlled exercise training, indicating that endurance conditioning was obtained. In groups which received duration and endurance conditioning, cardiac weight (14-25%) and myocyte dimension (13-20%) increased. The best conditioning protocol to promote physiological hypertrophy, our primary goal in the present study, was 90 min, twice a day, 5 days a week for 4 weeks with no overload attached to the body. Thus, duration- and frequency-controlled exercise training in mice induces a significant conditioning response qualitatively similar to that observed in humans.
Resumo:
Parkinson's disease, a major neurodegenerative disorder in humans whose etiology is unknown, may be associated with some environmental factors. Nocardia otitidiscaviarum (GAM-5) isolated from a patient with an actinomycetoma produced signs similar to Parkinson's disease following iv injection into NMRI mice. NMRI mice were infected intravenously with a non-lethal dose of 5 x 10(6) colony forming units of N. otitidiscaviarum (GAM-5). Fourteen days after bacterial infection, most of the 60 mice injected exhibited parkinsonian features characterized by vertical head tremor, akinesia/bradykinesia, flexed posture and postural instability. There was a peak of nocardial growth in the brain during the first 24 h followed by a decrease, so that by 14 days nocardiae could no longer be cultured. At 24 h after infection, Gram staining showed nocardiae in neurons in the substantia nigra and occasionally in the brain parenchyma in the frontal and parietal cortex. At 21 days post-infection, tyrosine hydroxylase immunolabeling showed a 58% reduction of tyrosine hydroxylase in the substantia nigra, and a 35% reduction of tyrosine hydroxylase in the ventral tegmental region. Dopamine levels were reduced from 110 ± 32.5 to 58 ± 16.5 ng/mg protein (47.2% reduction) in brain from infected mice exhibiting impaired movements, whereas serotonin levels were unchanged (191 ± 44 protein in control and 175 ± 39 ng/mg protein in injected mice). At later times, intraneuronal inclusion bodies were observed in the substantia nigra. Our observations emphasize the need for further studies of the potential association between Parkinson's disease or parkinsonism-like disease and exposure to various nocardial species.
Resumo:
Leishmaniasis is a disease caused by protozoa of the genus Leishmania, and visceral leishmaniasis is a form in which the inner organs are affected. Since knowledge about immunity in experimental visceral leishmaniasis is poor, we present here a review on immunity and immunosuppression in experimental visceral leishmaniasis in mouse and hamster models. We show the complexity of the mechanisms involved and differences when compared with the cutaneous form of leishmaniasis. Resistance in visceral leishmaniasis involves both CD4+ and CD8+ T cells, and interleukin (IL)-2, interferon (IFN)- gamma, and IL-12, the latter in a mechanism independent of IFN- gamma and linked to transforming growth factor (TGF)-ß production. Susceptibility involves IL-10 but not IL-4, and B cells. In immune animals, upon re-infection, the elements involved in resistance are different, i.e., CD8+ T cells and IL-2. Since one of the immunopathological consequences of active visceral leishmaniasis in humans is suppression of T-cell responses, many studies have been conducted using experimental models. Immunosuppression is mainly Leishmania antigen specific, and T cells, Th2 cells and adherent antigen-presenting cells have been shown to be involved. Interactions of the co-stimulatory molecule family B7-CTLA-4 leading to increased level of TGF-ß as well as apoptosis of CD4+ T cells and inhibition of macrophage apoptosis by Leishmania infection are other components participating in immunosuppression. A better understanding of this complex immune response and the mechanisms of immunosuppression in experimental visceral leishmaniasis will contribute to the study of human disease and to vaccine development.
Resumo:
The WT1 transcription factor regulates SRY expression during the initial steps of the sex determination process in humans, activating a gene cascade leading to testis differentiation. In addition to causing Wilms' tumor, mutations in WT1 are often responsible for urogenital defects in men, while SRY mutations are mainly related to 46,XY pure gonadal dysgenesis. In order to evaluate their role in abnormal testicular organogenesis, we screened for SRY and WT1 gene mutations in 10 children with XY partial gonadal dysgenesis, 2 of whom with a history of Wilms' tumor. The open reading frame and 360 bp of the 5' flanking sequence of the SRY gene, and the ten exons and intron boundaries of the WT1 gene were amplified by PCR of genomic DNA. Single-strand conformation polymorphism was initially used for WT1 mutation screening. Since shifts in fragment migration were only observed for intron/exon 4, the ten WT1 exons from all patients were sequenced manually. No mutations were detected in the SRY 5' untranslated region or within SRY open-reading frame sequences. WT1 sequencing revealed one missense mutation (D396N) in the ninth exon of a patient who also had Wilms' tumor. In addition, two silent point mutations were found in the first exon including one described here for the first time. Some non-coding sequence variations were detected, representing one new (IVS4+85A>G) and two already described (-7ATG T>G, IVS9-49 T>C) single nucleotide polymorphisms. Therefore, mutations in two major genes required for gonadal development, SRY and WT1, are not responsible for XY partial gonadal dysgenesis.
Resumo:
Although Helicobacter heilmannii infection is less common than H. pylori infection in humans, it is considered to be of medical importance because of its association with gastritis, gastric ulcer, carcinoma, and mucosa-associated lymphoid tissue lymphoma of the stomach. However, there have been no studies evaluating the role of the Th cell response in H. heilmannii gastric infection. We evaluated the participation of pro-inflammatory and anti-inflammatory cytokines, IFN-gamma and IL-4, in H. heilmannii gastric infection in genetically IFN-gamma- or IL-4-deficient mice. The serum IFN-gamma and IL-4 concentrations were determined by ELISA. The gastric polymorphonuclear infiltrate was higher (P = 0.007) in H. heilmannii-positive than in H. heilmannii-negative wild-type (WT) C57BL/6 mice, whereas no significant inflammation was demonstrable in the stomach of H. heilmannii-positive IFN-gamma-/- C57BL/6 mice. The degree of gastric inflammatory cells, especially in oxyntic mucosa, was also higher (P = 0.007) in infected IL-4-/- than in WT BALB/c mice. Serum IFN-gamma levels were significantly higher in IL-4-/- than in WT BALB/c mice, independently of H. heilmannii-positive or -negative status. Although no difference in serum IFN-gamma levels was seen between H. heilmannii-positive (11.3 ± 3.07 pg/mL, mean ± SD) and -negative (11.07 ± 3.5 pg/mL) WT BALB/c mice, in the group of IL-4-/- animals, the serum concentration of IFN-g was significantly higher in the infected ones (38.16 ± 10.5 pg/mL, P = 0.04). In contrast, serum IL-4 levels were significantly decreased in H. heilmannii-positive (N = 10) WT BALB/c animals compared to the negative (N = 10) animals. In conclusion, H. heilmannii infection induces a predominantly Th1 immune response, with IFN-gamma playing a central role in gastric inflammation.
Resumo:
Acute promyelocytic leukemia (APL) is characterized by the expansion of blasts that resemble morphologically promyelocytes and harbor a chromosomal translocation involving the retinoic acid receptor a (RARa) and the promyelocytic leukemia (PML) genes on chromosomes 17 and 15, respectively. The expression of the PML/RARa fusion gene is essential for APL genesis. In fact, transgenic mice (TM) expressing PML/RARa develop a form of leukemia that mimics the hematological findings of human APL. Leukemia is diagnosed after a long latency (approximately 12 months) during which no hematological abnormality is detected in peripheral blood (pre-leukemic phase). In humans, immunophenotypic analysis of APL blasts revealed distinct features; however, the precise immunophenotype of leukemic cells in the TM model has not been established. Our aim was to characterize the expression of myeloid antigens by leukemic cells from hCG-PML/RARa TM. In this study, TM (N = 12) developed leukemia at the mean age of 13.1 months. Morphological analysis of bone marrow revealed an increase of the percentage of immature myeloid cells in leukemic TM compared to pre-leukemic TM and wild-type controls (48.63 ± 16.68, 10.83 ± 8.11, 7.4 ± 5.46%, respectively; P < 0.05). Flow cytometry analysis of bone marrow and spleen from leukemic TM identified the asynchronous co-expression of CD34, CD117, and CD11b. This abnormal phenotype was rarely detected prior to the diagnosis of leukemia and was present at similar frequencies in hematologically normal TM and wild-type controls of different ages. The present results demonstrate that, similarly to human APL, leukemic cells from hCG-PML/RARa TM present a specific immunophenotype.
Resumo:
Leber's hereditary optic neuropathy (LHON) is a maternally inherited form of retinal ganglion cell degeneration leading to optic atrophy in young adults. Several mutations in different genes can cause LHON (heterogeneity). The ND6 gene is one of the mitochondrial genes that encodes subunit 6 of complex I of the respiratory chain. This gene is a hot spot gene. Fourteen Persian LHON patients were analyzed with single-strand conformational polymorphism and DNA sequencing techniques. None of these patients had four primary mutations, G3460A, G11788A, T14484C, and G14459A, related to this disease. We identified twelve nucleotide substitutions, G13702C, T13879C, T14110C, C14167T, G14199T, A14233G, G14272C, A14290G, G14365C, G14368C, T14766C, and T14798C. Eleven of twelve nucleotide substitutions had already been reported as polymorphism. One of the nucleotide substitutions (A14290G) has not been reported. The A14290G nucleotide substitution does not change its amino acid (glutamic acid). We looked for base conservation using DNA star software (MEGALIGN program) as a criterion for pathogenic or nonpathogenic nucleotide substitution in A14290G. The results of ND6 gene alignment in humans and in other species (mouse, cow, elegans worm, and Neurospora crassa mold) revealed that the 14290th base was not conserved. Fifty normal controls were also investigated for this polymorphism in the Iranian population and two had A14290G polymorphism (4%). This study provides evidence that the mtDNA A14290G allele is a new nonpathogenic polymorphism. We suggest follow-up studies regarding this polymorphism in different populations.
Resumo:
The glycosylation of glycoconjugates and the biosynthesis of polysaccharides depend on nucleotide-sugars which are the substrates for glycosyltransferases. A large proportion of these enzymes are located within the lumen of the Golgi apparatus as well as the endoplasmic reticulum, while many of the nucleotide-sugars are synthesized in the cytosol. Thus, nucleotide-sugars are translocated from the cytosol to the lumen of the Golgi apparatus and endoplasmic reticulum by multiple spanning domain proteins known as nucleotide-sugar transporters (NSTs). These proteins were first identified biochemically and some of them were cloned by complementation of mutants. Genome and expressed sequence tag sequencing allowed the identification of a number of sequences that may encode for NSTs in different organisms. The functional characterization of some of these genes has shown that some of them can be highly specific in their substrate specificity while others can utilize up to three different nucleotide-sugars containing the same nucleotide. Mutations in genes encoding for NSTs can lead to changes in development in Drosophila melanogaster or Caenorhabditis elegans, as well as alterations in the infectivity of Leishmania donovani. In humans, the mutation of a GDP-fucose transporter is responsible for an impaired immune response as well as retarded growth. These results suggest that, even though there appear to be a fair number of genes encoding for NSTs, they are not functionally redundant and seem to play specific roles in glycosylation.