148 resultados para biological and biochemical activities
Resumo:
Sleep disorders are not uncommon and have been widely reported throughout the world. They have a profound impact on industrialized 24-h societies. Consequences of these problems include impaired social and recreational activities, increased human errors, loss of productivity, and elevated risk of accidents. Conditions such as acute and chronic insomnia, sleep loss, excessive sleepiness, shift-work, jet lag, narcolepsy, and sleep apnea warrant public health attention, since residual sleepiness during the day may affect performance of daily activities such as driving a car. Benzodiazepine hypnotics and zopiclone promote sleep, both having residual effects the following day including sleepiness and reduced alertness. In contrast, the non-benzodiazepine hypnotics zolpidem and zaleplon have no significant next-day residual effects when taken as recommended. Research on the effects of wakefulness-promoting drugs on driving ability is limited. Countermeasures for excessive daytime sleepiness have a limited effect. There is a need for a social awareness program to educate the public about the potential consequences of various sleep disorders such as narcolepsy, sleep apnea, shift-work-related sleep loss, and excessive daytime sleepiness in order to reduce the number of sleep-related traffic accidents.
Resumo:
Quadriplegic subjects present extensive muscle mass paralysis which is responsible for the dramatic decrease in bone mass, increasing the risk of bone fractures. There has been much effort to find an efficient treatment to prevent or reverse this significant bone loss. We used 21 male subjects, mean age 31.95 ± 8.01 years, with chronic quadriplegia, between C4 and C8, to evaluate the effect of treadmill gait training using neuromuscular electrical stimulation, with 30-50% weight relief, on bone mass, comparing individual dual-energy X-ray absorptiometry responses and biochemical markers of bone metabolism. Subjects were divided into gait (N = 11) and control (N = 10) groups. The gait group underwent gait training for 6 months, twice a week, for 20 min, while the control group did not perform gait. Bone mineral density (BMD) of lumbar spine, femoral neck, trochanteric area, and total femur, and biochemical markers (osteocalcin, bone alkaline phosphatase, pyridinoline, and deoxypyridinoline) were measured at the beginning of the study and 6 months later. In the gait group, 81.8% of the subjects presented a significant increase in bone formation and 66.7% also presented a significant decrease of bone resorption markers, whereas 30% of the controls did not present any change in markers and 20% presented an increase in bone formation. Marker results did not always agree with BMD data. Indeed, many individuals with increased bone formation presented a decrease in BMD. Most individuals in the gait group presented an increase in bone formation markers and a decrease in bone resorption markers, suggesting that gait training, even with 30-50% body weight support, was efficient in improving the bone mass of chronic quadriplegics.
Resumo:
Neutrophils act as first-line-of-defense cells and the reduction of their functional activity contributes to the high susceptibilityto and severity of infections in diabetes mellitus. Clinical investigations in diabetic patients and experimental studies in diabetic rats and mice clearly demonstrated consistent defects of neutrophil chemotactic, phagocytic and microbicidal activities. Other alterations that have been reported to occur during inflammation in diabetes mellitus include: decreased microvascular responses to inflammatory mediators such as histamine and bradykinin, reduced protein leakage and edema formation, reduced mast cell degranulation, impairment of neutrophil adhesionto the endothelium and migration to the site of inflammation, production of reactive oxygen species and reduced release of cytokines and prostaglandin by neutrophils, increased leukocyte apoptosis, and reduction in lymph node retention capacity. Since neutrophil function requires energy, metabolic changes (i.e., glycolytic and glutaminolytic pathways) may be involved in the reduction of neutrophil function observed in diabetic states. Metabolic routes by which hyperglycemia is linked to neutrophil dysfunction include the advanced protein glycosylation reaction, the polyol pathway, oxygen-free radical formation, the nitric oxide-cyclic guanosine-3'-5'monophosphate pathway, and the glycolytic and glutaminolytic pathways. Lowering of blood glucose levels by insulin treatment of diabetic patients or experimental animals has been reported to have significant correlation with improvement of neutrophil functional activity. Therefore, changes might be primarily linked to a continuing insulin deficiency or to secondary hyperglycemia occurring in the diabetic individual. Accordingly, effective control with insulin treatment is likely to be relevant during infection in diabetic patients.
Resumo:
Given the loss of therapeutic efficacy associated with the development of resistance to lamivudine (LMV) and the availability of new alternative treatments for chronic hepatitis B patients, early detection of viral genotypic resistance could allow the clinician to consider therapy modification before viral breakthrough and biochemical relapse occur. To this end, 28 LMV-treated patients (44 ± 12 years; 24 men), on their first therapy schedule, were monitored monthly at four Brazilian centers for the emergence of drug resistance using the reverse hybridization-based INNO-LiPA HBV DR assay and occasionally sequencing (two cases). Positive viral responses (HBV DNA clearance) after 6, 12, and 18 months of therapy were achieved by 57, 68, and 53% of patients, while biochemical responses (serum alanine aminotransferase normalization) were observed in 82, 82, and 53% of cases. All viral breakthrough cases (N = 8) were related to the emergence of YMDD variants observed in 7, 21, and 35% of patients at 6, 12, and 18 months, respectively. The emergence of these variants was not associated with viral genotype, HBeAg expression status, or pretreatment serum alanine aminotransferase levels. The detection of resistance-associated mutations was observed before the corresponding biochemical flare (41 ± 14 and 60 ± 15 weeks) in the same individuals. Then, if highly sensitive LMV drug resistance testing is carried out at frequent and regular intervals, the relatively long period (19 ± 2 weeks) between the emergence of viral resistance and the onset of biochemical relapse can provide clinicians with ample time to re-evaluate drug therapy.
Resumo:
The aim of this study was to evaluate the role of oxidative damage in pancreatitis-induced hepatic injury. Thirty-five rats were divided into five groups (each of 7 rats): control, cerulein (100 µg/kg body weight), cerulein and pentoxifylline (12 mg/kg body weight), cerulein plus L-NAME (10 mg/kg body weight) and cerulein plus L-arginine (160 mg/kg body weight). The degree of hepatic cell degeneration differed significantly between groups. Mean malondialdehyde levels were 7.00 ± 2.29, 20.89 ± 10.13, 11.52 ± 4.60, 18.69 ± 8.56, and 8.58 ± 3.68 nmol/mg protein for the control, cerulein, pentoxifylline, L-NAME, and L-arginine groups, respectively. Mean catalase activity was 3.20 ± 0.83, 1.09 ± 0.35, 2.05 ± 0.91, 1.70 ± 0.60, and 2.85 ± 0.47 U/mg protein for the control, cerulein, pentoxifylline, L-NAME, and L-arginine groups, respectively, and mean glutathione peroxidase activity was 0.72 ± 0.25, 0.33 ± 0.09, 0.37 ± 0.04, 0.34 ± 0.07 and 0.42 ± 0.1 U/mg protein for the control, cerulein, pentoxifylline, L-NAME, and L-arginine groups, respectively. Cerulein-induced liver damage was accompanied by a significant increase in tissue malondialdehyde levels (P < 0.05) and a significant decrease in catalase (P < 0.05) and GPx activities (P < 0.05). L-arginine and pentoxifylline, but not L-NAME, protected against this damage. Oxidative injury plays an important role not only in the pathogenesis of AP but also in pancreatitis-induced hepatic damage.
Resumo:
The efficacy of endothelin receptor antagonists in protecting against myocardial ischemia/reperfusion (I/R) injury is controversial, and the mechanisms remain unclear. The aim of this study was to investigate the effects of CPU0123, a novel endothelin type A and type B receptor antagonist, on myocardial I/R injury and to explore the mechanisms involved. Male Sprague-Dawley rats weighing 200-250 g were randomized to three groups (6-7 per group): group 1, Sham; group 2, I/R + vehicle. Rats were subjected to in vivo myocardial I/R injury by ligation of the left anterior descending coronary artery and 0.5% sodium carboxymethyl cellulose (1 mL/kg) was injected intraperitoneally immediately prior to coronary occlusion. Group 3, I/R + CPU0213. Rats were subjected to identical surgical procedures and CPU0213 (30 mg/kg) was injected intraperitoneally immediately prior to coronary occlusion. Infarct size, cardiac function and biochemical changes were measured. CPU0213 pretreatment reduced infarct size as a percentage of the ischemic area by 44.5% (I/R + vehicle: 61.3 ± 3.2 vs I/R + CPU0213: 34.0 ± 5.5%, P < 0.05) and improved ejection fraction by 17.2% (I/R + vehicle: 58.4 ± 2.8 vs I/R + CPU0213: 68.5 ± 2.2%, P < 0.05) compared to vehicle-treated animals. This protection was associated with inhibition of myocardial inflammation and oxidative stress. Moreover, reduction in Akt (protein kinase B) and endothelial nitric oxide synthase (eNOS) phosphorylation induced by myocardial I/R injury was limited by CPU0213 (P < 0.05). These data suggest that CPU0123, a non-selective antagonist, has protective effects against myocardial I/R injury in rats, which may be related to the Akt/eNOS pathway.
Resumo:
Hypoxia-inducible factor-1α (HIF-1α) is one of the most potent angiogenic growth factors. It improves angiogenesis and tissue perfusion in ischemic skeletal muscle. In the present study, we tested the hypothesis that ischemic postconditioning is effective for salvaging ischemic skeletal muscle resulting from limb ischemia-reperfusion injury, and that the mechanism involves expression of HIF-1α. Wistar rats were randomly divided into three groups (n=36 each): sham-operated (group S), hindlimb ischemia-reperfusion (group IR), and ischemic postconditioning (group IPO). Each group was divided into subgroups (n=6) according to reperfusion time: immediate (0 h, T0), 1 h (T1), 3 h (T3), 6 h (T6), 12 h (T12), and 24 h (T24). In the IPO group, three cycles of 30-s reperfusion and 30-s femoral aortic reocclusion were carried out before reperfusion. At all reperfusion times (T0-T24), serum creatine kinase (CK) and lactate dehydrogenase (LDH) activities, as well as interleukin (IL)-6, IL-10, and tumor necrosis factor-α (TNF-α) concentrations, were measured in rats after they were killed. Histological and immunohistochemical methods were used to assess the skeletal muscle damage and HIF-1α expression in skeletal muscle ischemia. In groups IR and IPO, serum LDH and CK activities and TNF-α, IL-6, and IL-10 concentrations were all significantly increased compared to group S, and HIF-1α expression was up-regulated (P<0.05 or P<0.01). In group IPO, serum LDH and CK activities and TNF-α and IL-6 concentrations were significantly decreased, IL-10 concentration was increased, HlF-1α expression was down-regulated (P<0.05 or P<0.01), and the pathological changes were reduced compared to group IR. The present study suggests that ischemic postconditioning can reduce skeletal muscle damage caused by limb ischemia-reperfusion and that its mechanisms may be related to the involvement of HlF-1α in the limb ischemia-reperfusion injury-triggered inflammatory response.
Resumo:
This study aimed to evaluate the effects of carvedilol treatment and a regimen of supervised aerobic exercise training on quality of life and other clinical, echocardiographic, and biochemical variables in a group of client-owned dogs with chronic mitral valve disease (CMVD). Ten healthy dogs (control) and 36 CMVD dogs were studied, with the latter group divided into 3 subgroups. In addition to conventional treatment (benazepril, 0.3-0.5 mg/kg once a day, and digoxin, 0.0055 mg/kg twice daily), 13 dogs received exercise training (subgroup I; 10.3±2.1 years), 10 dogs received carvedilol (0.3 mg/kg twice daily) and exercise training (subgroup II; 10.8±1.7 years), and 13 dogs received only carvedilol (subgroup III; 10.9±2.1 years). All drugs were administered orally. Clinical, laboratory, and Doppler echocardiographic variables were evaluated at baseline and after 3 and 6 months. Exercise training was conducted from months 3-6. The mean speed rate during training increased for both subgroups I and II (ANOVA, P>0.001), indicating improvement in physical conditioning at the end of the exercise period. Quality of life and functional class was improved for all subgroups at the end of the study. The N-terminal pro-brain natriuretic peptide (NT-proBNP) level increased in subgroup I from baseline to 3 months, but remained stable after training introduction (from 3 to 6 months). For subgroups II and III, NT-proBNP levels remained stable during the entire study. No difference was observed for the other variables between the three evaluation periods. The combination of carvedilol or exercise training with conventional treatment in CMVD dogs led to improvements in quality of life and functional class. Therefore, light walking in CMVD dogs must be encouraged.
Resumo:
Cocos nucifera (L.) (Arecaceae) is commonly called the “coconut tree” and is the most naturally widespread fruit plant on Earth. Throughout history, humans have used medicinal plants therapeutically, and minerals, plants, and animals have traditionally been the main sources of drugs. The constituents of C. nucifera have some biological effects, such as antihelminthic, anti-inflammatory, antinociceptive, antioxidant, antifungal, antimicrobial, and antitumor activities. Our objective in the present study was to review the phytochemical profile, pharmacological activities, and toxicology of C. nucifera to guide future preclinical and clinical studies using this plant. This systematic review consisted of searches performed using scientific databases such as Scopus, Science Direct, PubMed, SciVerse, and Scientific Electronic Library Online. Some uses of the plant were partially confirmed by previous studies demonstrating analgesic, antiarthritic, antibacterial, antipyretic, antihelminthic, antidiarrheal, and hypoglycemic activities. In addition, other properties such as antihypertensive, anti-inflammatory, antimicrobial, antioxidant, cardioprotective, antiseizure, cytotoxicity, hepatoprotective, vasodilation, nephroprotective, and anti-osteoporosis effects were also reported. Because each part of C. nucifera has different constituents, the pharmacological effects of the plant vary according to the part of the plant evaluated.
Resumo:
Sex hormones from environmental and physiological sources might play a major role in the pathogenesis of hepatoblastoma in children. This study investigated the effects of estradiol and bisphenol A on the proliferation and telomerase activity of human hepatoblastoma HepG2 cells. The cells were divided into 6 treatment groups: control, bisphenol A, estradiol, anti-estrogen ICI 182,780 (hereinafter ICI), bisphenol A+ICI, and estradiol+ICI. Cell proliferation was measured based on average absorbance using the Cell Counting-8 assay. The cell cycle distribution and apoptotic index were determined by flow cytometry. Telomerase activity was detected by polymerase chain reaction and a telomeric repeat amplification protocol assay. A higher cell density was observed in bisphenol A (P<0.01) and estradiol (P<0.05) groups compared with the control group. Cell numbers in S and G2/M phases after treatment for 48 h were higher (P<0.05), while the apoptotic index was lower (P<0.05) and telomerase activities at 48 and 72 h (P<0.05) were higher in these groups than in the control group. The cell density was also higher in bisphenol A+ICI (P<0.01) and estradiol+ICI (P<0.05) groups compared with the ICI group. Furthermore, cell numbers were increased in S and G2/M phases (P<0.05), while the apoptotic index was lower (P<0.05) and telomerase activities at 48 and 72 h were higher (P<0.05) in these groups than in the ICI group. Therefore, bisphenol A and estradiol promote HepG2 cell proliferation in vitro by inhibition of apoptosis and stimulation of telomerase activity via an estrogen receptor-dependent pathway.
Resumo:
During enzymatic process of cheese manufacturing, rennin cleaves κ-casein releasing two fractions: para-κ-casein and glycomacropeptide (GMP), which remains soluble in milk whey. GMP is a peptide with structural particularities such as chain carbohydrates linked to specific threonine residues, to which a great variety of biological activities is attributed. Worldwide cheese production has increased generating high volumes of milk whey that could be efficiently used as an alternative source of high quality peptide or protein in foodstuff formulations. In order to evaluate isolation and recovery on whey GMP by means of thermal treatment (90 °C), 18 samples (2 L each) of sweet whey, resuspended commercial whey (positive control) and acid whey (negative control) were processed. Indirect presence of GMP was verified using chemical tests and PAGE-SDS 15%. At 90 °C treated sweet whey, 14, 20 and 41 kDa bands were observed. These bands may correspond to olygomers of GMP. Peptide recovery showed an average of 1.5 g/L (34.08%). The results indicate that industrial scale GMP production is feasible; however, further research must be carried out for the biological and nutritional evaluation of GMP's incorporation to foodstuff as a supplement.
Resumo:
The aim of this study was to analyze the physicochemical properties and antifungal activities of the red propolis samples from Sergipe, Brazil, and also evaluate their variability throughout the year. The characterization of the hydroalcoholic extract (HPE) of the red propolis samples was performed monthly from October 2009 to September 2010. The concentrations of the bioactive compounds varied during the year, but their chromatographic profiles were similar. Four compounds were identified by comparison with authentic standards. Formononetin was one of the predominant compounds in all propolis extracts. In our study, it was observed that all the propolis samples inhibited the growth of Candida species. Multivariate analysis confirmed the variations in chemical composition and color of the HPEs throughout the year. The biological activities of the HPEs were statistically significant (p<0.05), and all samples exhibited antifungal properties.
Resumo:
Abstract The search for chemopreventive/chemoprotective compounds in marine organism has been extensively reported; however, the presence of these compounds in octopus has been incipiently explored. In this research, the antimutagenic, antiproliferative, and antioxidant potential of three crude extracts (methanolic, acetonic, and hexanic) from Paroctopus limaculatus was investigated. Antimutagenic activity against aflatoxin B1 (AFB1) was evaluated through the Ames test using Salmonella typhimurium tester strains TA98 and 100. Antiproliferative activity was assessed using the standard MTT (3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide) assay on M12.C3.F6 murine cell line. Antioxidant activity was assessed using the DPPH (2,2-diphenyl-1-picrylhydrazyl) and ABTS (2,2′-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) methods. Hexanic extract showed the highest antimutagenic and antiproliverative activities inhibiting 80 and 43% of mutagenicity induced by AFB1 for TA98 and TA100, respectively, and showing a high antiproliferative activity at 200 and 100 µg/mL. However, when the antioxidant activity was evaluated at a concentration of 50 mg/mL, the methanolic fraction exerted inhibition of 98 and 96 % ABTS and DPPH radicals, respectively. RP-HPLC and 1H-RMN analyses suggested the presence of double bonds with extended conjugation and oxygenated compounds such as alcohols, esters, ethers or ketones. These results suggested that hexanic and methanolic extract form octopus contained compounds with chemoprotective and antioxidant properties.