183 resultados para antimicrobial agent
Resumo:
A direct spectrophotometric method for simultaneous determination of Co(II) and Ni(II), with diethanoldithiocarbamate (DEDC) as complexing agent, is proposed using the maximum absorption at 360 and 638 nm (Co(II)/DEDC) and 390 nm (Ni/DEDC). Adjusting the best metal/ligand ratio, supporting eletrolite, pH, and time of analysis, linear analytical curves from 1.0 10-6-4.0 10-4 for Co(II) in the presence of Ni 1.0 10-6-1.0 10-4 mol L-1 were observed. No further treatment or calculation processes have been necessary. Recoveries in different mixing ratios were of 99%. Interference of Fe(III), Cu(II), Zn(II) and Cd(II), and anions as NO3-, Cl-, ClO4-, citrate and phosphate has been evaluated. The method was applied to natural waters spiked with the cations.
Resumo:
Experiments were carried out to determine in vivo the IC50 and the IC90 for demethylation-inhibitor fungicides (DMIs, triazoles) and quinone outside inhibitors (QoIs, strobilurins) to the five most frequent races of Puccinia triticina in 2007 growing season in Southern Brazil. The tests were done in a greenhouse with wheat seedlings. DMI fungicides were tested at the concentrations, in mg/L, 0.0; 0.02; 0.2; 2.0; 20.0; 100.0 and 200.0, and QoIs at the concentrations 0.0; 0.0001; 0.001; 0.01; 0.1; 1 and 10.0 mg of active ingredient/L water. Fungicides were preventively applied at 24 hours before the inoculation of seedlings with the fungal spores. The effect of treatments was assessed based on the number of uredia/cm². The lowest IC50 (inhibitory concentration) for DMI fungicides determined for MCG-MN, sensitive race, ranged from 0.33 to 0.91 mg/L, while the highest values for MDP-MR, MDT-MR, MDK-MR, MFH-HT races, varied from 9.63 to 85.64 mg/L (suspected insensitivity). QoI fungicide presented an IC50 varying from 0.0018 to 0.14 mg/L. The sensitivity reduction factor for DMIs varied from 8.8 to 238.8, and for QoIs from 0.3 to 1.5 mg/L. Sensitivity reduction was confirmed for the races MDP-MR, MDT-MR, MDK-MR, MFH-HT to DMIs, as well as their sensitivity to QoI fungicides.
Resumo:
Microorganisms for biological control are capable of producing active compounds that inhibit the development of phytopathogens, constituting a promising tool toob tain active principles that could replace synthetic pesticides. This study evaluatedtheability of severalpotentialbiocontrol microorganismsto produce active extracellular metabolites. In vitro antagonistic capability of 50 bacterial isolates from rhizospheric soils of "criolla" potato (Solanum phureja) was tested through dual culture in this plant with different plant pathogenic fungi and bacteria. Isolates that showed significantly higher antagonistic activity were fermented in liquid media and crude extracts from the supernatants had their biological activities assessed by optical density techniques. Inhibitory effecton tested pathogens was observed for concentrations between 0.5% and 1% of crude extracts. There was a correlation between the antimicrobial activity of extracts and the use of nutrient-rich media in bacteria fermentation. Using a bioguided method, a peptidic compound, active against Fusarium oxysporum, was obtained from the 7ANT04 strain (Pyrobaculum sp.). Analysis by nuclear magnetic resonance and liquid chromatography coupled to mass detector evidenced an 11-amino acid compound. Bioinformatic software using raw mass data confirmed the presence of a cyclic peptide conformed by 11 mostly non-standard amino acids.
Resumo:
Northern corn leaf blight, caused by Exserohilum turcicum(Et), is one of the major corn diseases which can reduce grain yield and quality. The aim of this study was to determine the mycelial sensitivity of ten Etisolates, five from Argentina and five from Brazil, to six fungicides (carbendazim, captan, fludioxinil, metalaxyl, iprodione and thiram) used in seed treatment. The inhibitory concentration (IC50) was determined by using seven concentrations of the fungicides supplemented to the agar medium. The mycelial colony diameter was measured with a digital caliper. Experimental design was completely randomized with four replicates. Data on the percent mycelial growth inhibition were analyzed by logarithmic regression and the IC50 was calculated. The fungicide iprodione was the most potent, with IC50 < 0.01 mg/L, followed by fludioxonil, IC50 0.31 mg/L, and thiram, 1.37 mg/L. Carbendazim, metalaxyl and captan were classified as non-fungitoxic, showing IC50 > 50 mg/L for all isolates. Although iprodione is the most potent fungicide, it is not used for corn seed treatment. The IC50s obtained in this study can be used as baseline for future monitoring studies of Etsensitivity to fungicides.
Resumo:
The aim of this study was to evaluate the microencapsulation of pequi pulp by spray drying. A central composite rotational design was used in order to evaluate the effect of the independent variables: inlet air temperature, surfactant concentration and modified starch concentration. The dependent variables were assumed as yield of the process and the product features microencapsulated. A selection of the best process condition was performed to obtain the best condition of a product with the highest vitamin C and carotenoids content. Powders showed moisture content below 2%. The experimental values of hygroscopicity, yield, water activity, total carotenoids and vitamin C powders ranged from 7.96 to 10.67 g of adsorbed water/100g of solids, 24.34 to 49.80%, 0.13 to 0.30, 145.78 to 292.11 mg of ascorbic acid/g of pequi solids and 15.51 to 123.42 mg of carotenoids/g of pequi solids, respectively. The inlet air temperature 140°C, the surfactant concentration of 2.5% and the modified starch concentration of 22.5% was recommended as the selected condition. By the scanning electron microscopy, it was observed that most of the particles had spherical shape and smooth surface.
Resumo:
Salmonella serovars isolated from swine are of particular interest not only because of the pathogenic potential for this animal species, but also due to its relevance with regard to public health. On basis of the profile of resistance to antimicrobials, 13 Salmonella strains were selected which belonged to the serovars Muenster (7), Derby (4), Typhimurium (1), and Braenderup (1). They were isolated from healthy swine as well as from the abattoir environment in the state of Rio de Janeiro. All strains of Salmonella were subjected to bacterial conjugation, and the E. coli K12 Nal r Lac+ F standard strain was used as receptor, with the purpose to verify the ability to transfer the resistance marks. Gene transfer phenomenon was detected in seven strains, and except SalmonellaTyphimurium which transconjugated to Sm, Tc and Su, the remaining ones were characterized by transferring mark Su only. By plasmidial analysis of strains used and their respective transconjugants, 63 Kb plasmid was found, which was probably related to S. Typhimurium resistance.
Resumo:
The study was conducted to characterize pheno-genotypically the virulence factors and resistance pattern of Staphylococcus aureus isolates from milk samples of cows with subclinical mastitis. All hemolytic isolates presented beta-hemolysin, and 38% of the non-hemolytic isolates were able to express hemolysins in the presence of a beta-hemolytic strain. The amplification of the coa-gene displayed four different size polymorphisms with about 400 bp, 600 bp, 700 bp and 900 bp. The spaA gene that encodes the IgG-binding region of protein A revealed sizes of 700 bp and 900 bp. The amplification of region X from spaA yielded a single amplicon for each isolate with the prevalent amplicon size being of 180 bp. Amplification of sae gene yielded an amplicon size of 920 bp in 71% of the isolates. Antibiotic resistance pattern revealed that 42% S. aureus were susceptible to all antimicrobials tested. Seven different antibiotic patterns were observed. Our results indicated that 47% and 25% of S. aureus strains exhibited resistance to penicillin and oxacillin respectively. All oxacillin-resistant isolates were mecA-positive.
Resumo:
The present study evaluated the pheno- and genotypical antimicrobial resistance profile of coagulase-negative Staphylococcus (CNS) species isolated from dairy cows milk, specially concerning to oxacillin. Of 100 CNS isolates, the S. xylosus was the prevalent species, followed by S. cohnii, S. hominis, S. capitis and S. haemolyticus. Only 6% were phenotypically susceptible to the antimicrobial agents tested in disk diffusion assay. Penicillin and ampicillin resistance rates were significantly higher than others antimicrobials. Four isolates were positive to mecA gene (4%), all represented by the S. xylosus species. The blaZ gene was detected in 16% of the isolates (16/100). It was noticed that all mecA + were also positive to this gene and the presence of both genes was correlated to phenotypic beta-lactamic resistance. We conclude that CNS species from bovine milk presented significantly distinct antimicrobial resistance profiles, evaluated by phenotypic and genotypic tests, which has implications for treatment and management decisions.
Resumo:
The study aimed to determine the antimicrobial resistance patterns and to identify molecular resistance markers in Staphylococcus spp. (n=210) isolated from small ruminant mastitis in Brazil. The antimicrobial resistance patterns were evaluated by the disk diffusion test and by detection of the presence of mecA, blaZ, ermA, ermB, ermC and msrA genes by PCR. The efflux pump test was performed using ethidium bromide and biofilm production was determined by Congo red agar test along with PCR for detection of the icaD gene. The isolates were most resistant to amoxicillin (50.0%), streptomycin (42.8%), tetracycline (40.4%), lincomycin (39.0%) and erythromycin (33.8%). Pan-susceptibility to all tested drugs was observed in 71 (33.8%) isolates and 41 Staphylococcus isolates were positive for the efflux pump. Although phenotypic resistance to oxacillin was observed in 12.8% of the isolates, none harbored the mecA gene. However, 45.7% of the isolates harbored blaZ indicating that beta-lactamase production was the main mechanism associated with staphylococci resistance to beta-lactams in the present study. The other determinants of resistance to antimicrobial agents ermA, ermB, ermC, and msrA were observed in 1.4%, 10.4%, 16.2%, and 0.9% of the isolates, respectively. In addition, the icaD gen was detected in 32.9% of the isolates. Seventy three isolates (54 from goats and 19 from sheep) were negative for all resistance genes tested and 69 isolates presented two or more resistance genes. Association among blaZ, ermA, ermB, ermC and efflux pump were observed in 17 isolates, 14 of which originated from goats and three from sheep. The data obtained in this study show the resistance of the isolates to beta-lactamics, which may be associated with the use of antimicrobial drugs without veterinary control.
Resumo:
The purpose of this paper was to study the etiology of mastitis, determine the antimicrobial susceptibility profile of Staphylococcus spp. and to identify the risk factors associated with infection in dairy cows in the states of Bahia and Pernambuco, Brazil. From the 2,064 milk samples analyzed, 2.6% were associated with cases of clinical mastitis and 28.2% with subclinical mastitis. In the microbiological culture, Staphylococcus spp. (49.1%) and Corynebacterium spp. (35.3%) were the main agents found, followed by Prototheca spp. (4.6%) and Gram negative bacilli (3.6%). In the antimicrobial susceptibility testing, all 218 Staphylococcus spp. were susceptible to rifampicin and the least effective drug was amoxicillin (32.6%). Multidrug resistance to three or more drugs was observed in 65.6% of Staphylococcus spp. The risk factors identified for mastitis were the extensive production system, not providing feed supplements, teat drying process, not disinfecting the teats before and after milking, and inadequate hygiene habits of the milking workers. The presence of multiresistant isolates in bovine milk demonstrates the importance of the choice and appropriate use of antimicrobial agents. Prophylactic and control measures, including teat antisepsis and best practices for achieving hygienic milking should be established in order to prevent new cases of the disease in herds.
Resumo:
Commercial broiler flocks from a farm located in the State of São Paulo, Brazil, presented diarrhea, depression, increased mortality and poor weight gain. Upon post-mortem examination, classical signs of Inclusion Body Hepatitis/Hydropericardium Syndrome (IBH/HPS) were observed, including enlarged pale yellow-colored livers and straw-colored liquid in the pericardial sac. In addition, gross lesions were also observed in the kidneys, pancreas, thymus, intestines and gallbladder. Samples of these organs were analyzed by PCR for the detection of the hexon gene of the Fowl Adenovirus (FAdVs) Group I. The results were positive for both flocks (A and B) assayed by PCR. The macroscopic lesions associated with the detection of FAdV Group I by PCR in several of these affected organs allowed for the identification of IBH/HPS. In fact, this is the first report in Brazil of IBH/HPS in broilers, which identifies FAdVs group I as a causal agent of the disease. These findings may contribute to the worldwide epidemiology of the adenovirus-mediated hepatitis/hydropericardium syndrome.
Resumo:
The objective of this study was to evaluate herd management practices and mastitis treatment procedures as risk factors associated with Staphylococcus aureus antimicrobial resistance. For this study, 13 herds were selected to participate in the study to evaluate the association between their management practices and mastitis treatment procedures and in vitro antimicrobial susceptibility. A total of 1069 composite milk samples were collected aseptically from the selected cows in four different periods over two years. The samples were used for microbiological culturing of S. aureus isolates and evaluation of their antimicrobial susceptibility. A total of 756 samples (70.7%) were culture-positive, and S. aureus comprised 27.77% (n=210) of the isolates. The S. aureus isolates were tested using the disk-diffusion susceptibility assay with the following antimicrobials: ampicillin 10mg; clindamycin 2μg; penicillin 1mg; ceftiofur 30μg; gentamicin 10mg; sulfa-trimethoprim 25μg; enrofloxacin 5μg; sulfonamide 300μg; tetracycline 30μg; oxacillin 1mg; cephalothin 30μg and erythromycin 5μg. The variables that were significantly associated with S. aureus resistance were as follows: the treatment of clinical mastitis for ampicillin (OR=2.18), dry cow treatment for enrofloxacin (OR=2.11) and not sending milk samples for microbiological culture and susceptibility tests, for ampicillin (OR=2.57) and penicillin (OR=4.69). In conclusion, the identification of risk factors for S. aureus resistance against various mastitis antimicrobials is an important information that may help in practical recommendations for prudent use of antimicrobial in milk production.
Resumo:
Currently, there is a growing interest in medicinal plants, because of an increased demand for alternate therapies. In this study, the antimicrobial activity and toxicity of the essential oil of Lippia origanoides (L. origanoides) were investigated. The essential oil of L. origanoides was extracted by steam-dragging distillation and its constituents were identified by chromatography coupled with mass spectrometry. Among the 15 compounds identified, the most abundant were carvacrol (29.00%), o-cymene (25.57%), and thymol methyl ether (11.50%). The essential oil was studied in antimicrobial assays to determine the MIC and MBC. The results indicated that a concentration of 120μL/mL of oil was sufficient to inhibit the growth of the following microorganisms: Escherichia coli (ATCC 25922), Staphylococcus aureus (ATCC 25923) and Salmonella cholerasuis (ATCC 10708). Acute and chronic toxic effects of orally administered oil were investigated in Wistar rats by using standard methods. Doses of 30, 60 and 120mg/kg of the essential oil did not induce significant changes in weight, behavior or hematological and biochemical parameters in the animals. There were no signs of any histopathological changes to the liver, kidneys or heart of the treated rats, suggesting that Lippia origanoides oil is non-toxic after oral administration in acute or chronic toxicity studies. The results obtained in this study show that the essential oil of L. origanoides has a high safety margin, with no detectable toxic effects in rats treated with doses to 120mg/kg. In addition, L. origanoides oil demonstrated potent antimicrobial activity against S. aureus, E. coli and S. cholerasuis. Based on these findings, this essential oil may have practical application as a veterinary antimicrobial.
Resumo:
Avian pathogenic Escherichia coli (APEC) is responsible for various pathological processes in birds and is considered as one of the principal causes of morbidity and mortality, associated with economic losses to the poultry industry. The objective of this study was to demonstrate that it is possible to predict antimicrobial resistance of 256 samples (APEC) using 38 different genes responsible for virulence factors, through a computer program of artificial neural networks (ANNs). A second target was to find the relationship between (PI) pathogenicity index and resistance to 14 antibiotics by statistical analysis. The results showed that the RNAs were able to make the correct classification of the behavior of APEC samples with a range from 74.22 to 98.44%, and make it possible to predict antimicrobial resistance. The statistical analysis to assess the relationship between the pathogenic index (PI) and resistance against 14 antibiotics showed that these variables are independent, i.e. peaks in PI can happen without changing the antimicrobial resistance, or the opposite, changing the antimicrobial resistance without a change in PI.
Resumo:
Abstract: The Enterobacteriaceae family contains potentially zoonotic bacteria, and their presence in canaries is often reported, though the current status of these in bird flocks is unknown. Therefore, this study aimed to identify the most common genera of enterobacteria from canaries (Serinus canaria) and their antimicrobial resistance profiles. From February to June of 2013, a total of 387 cloacal swab samples from eight domiciliary breeding locations of Fortaleza city, Brazil, were collected and 58 necropsies were performed in canaries, which belonged to the Laboratory of Ornithological Studies. The samples were submitted to microbiological procedure using buffered peptone water and MacConkey agar. Colonies were selected according to their morphological characteristics on selective agar and submitted for biochemical identification and antimicrobial susceptibility. A total of 61 isolates were obtained, of which 42 were from cloacal swabs and 19 from necropsies. The most isolated bacteria was Escherichia coli with twenty five strains, followed by fourteen Klebsiellaspp., twelve Enterobacterspp., seven Pantoea agglomerans, two Serratiaspp. and one Proteus mirabilis. The antimicrobial to which the strains presented most resistance was sulfonamides with 55.7%, followed by ampicillin with 54.1% and tetracycline with 39.3%. The total of multidrug-resistant bacteria (MDR) was 34 (55.7%). In conclusion, canaries harbor members of the Enterobacteriaceae family and common strains present a high antimicrobial resistance rate, with a high frequency of MDR bacteria.