230 resultados para annealing conditions
Resumo:
The objective of this work was to monitor the maintenance of Citrus tristeza virus (CTV) protective isolates stability in selected clones of 'Pêra' sweet orange (Citrus sinensis), preimmunized or naturally infected by the virus, after successive clonal propagations. The work was carried out in field conditions in the north of Paraná State, Brazil. Coat protein gene (CPG) analysis of 33 isolates collected from 16 clones of 'Pêra' sweet orange was performed using single strand conformational polymorphism (SSCP). Initially, the isolates were characterized by symptoms of stem pitting observed in clones. Then viral genome was extracted and used as template for the amplification of CPG by reverse transcription polimerase chain reaction (RTPCR). RTPCR products electrophoretic profiles were analyzed using the Jaccard coefficient and the UPGMA method. The majority of the clones had weak to moderate stem pitting symptoms and its CTV isolates showed alterations in the SSCP profiles. However, the stability of the protective complex has been maintained, except for isolates from two analised clones. Low genetic variability was observed within the isolates during the studied years.
Resumo:
The objective of this work was to evaluate in vitro storage of Piper aduncum and P. hispidinervum under slow-growth conditions. Shoots were stored at low temperatures (10, 20 and 25°C), and the culture medium was supplemented with osmotic agents (sucrose and mannitol - at 1, 2 and 3%) and abiscisic acid - ABA (0, 0.5, 1.0, 2.0 and 3.0 mg L-1). After six-months of storage, shoots were evaluated for survival and regrowth. Low temperature at 20ºC was effective for the in vitro conservation of P. aduncum and P. hispidinervum shoots. In vitro cultures maintained at 20ºC on MS medium showed 100% survival with slow-growth shoots. The presence of mannitol or ABA, in the culture medium, negatively affected shoot growth, which is evidenced by the low rate of recovered shoots.
Resumo:
The objective of this work was to parameterize, calibrate, and validate a new version of the soybean growth and yield model developed by Sinclair, under natural field conditions in northeastern Amazon. The meteorological data and the values of soybean growth and leaf area were obtained from an agrometeorological experiment carried out in Paragominas, PA, Brazil, from 2006 to 2009. The climatic conditions during the experiment were very distinct, with a slight reduction in rainfall in 2007, due to the El Niño phenomenon. There was a reduction in the leaf area index (LAI) and in biomass production during this year, which was reproduced by the model. The simulation of the LAI had root mean square error (RMSE) of 0.55 to 0.82 m² m-2, from 2006 to 2009. The simulation of soybean yield for independent data showed a RMSE of 198 kg ha-1, i.e., an overestimation of 3%. The model was calibrated and validated for Amazonian climatic conditions, and can contribute positively to the improvement of the simulations of the impacts of land use change in the Amazon region. The modified version of the Sinclair model is able to adequately simulate leaf area formation, total biomass, and soybean yield, under northeastern Amazon climatic conditions.
Resumo:
The objective of this work was to determine the effect of climatic seasonality on physic nut (Jatropha curcas), in field, under semiarid climate conditions. Stomatal conductance (g s), transpiration (E), soluble leaf carbohydrates (SLC), free amino acids (FAA) and total proteins (TP) were measured in leaves, in a commercial plantation in Northeast Brazil, during the summer and autumn. Plants showed high g s and E, as well as SLC, FAA and TP contents in the summer, which gradually decreased with the lower temperatures and photosynthetically active radiation during the autumn, despite the higher water availability. Even in conditions of adequate water availability, the combination of low temperatures and reduced light drastically decreased foliar metabolism.
'Royal Gala' apple quality stored under ultralow oxygen concentration and low temperature conditions
Resumo:
The objective of this work was to evaluate the interaction of ultralow oxygen concentrations (ULO) with storage temperatures and carbon dioxide partial pressures and its influence on fruit quality preservation and on the occurrence of physiological disorders in 'Royal Gala' apples. The experiment was carried out in a completely randomized design, with four replicates 25-fruit. ULO conditions (1.0 kPa O2 + 2.0 kPa CO2; 0.8 kPa O2 + 1.5 kPa CO2; 0.8 kPa O2 + 1.0 kPa CO2; 0.6 kPa O2 + 1.5 kPa CO2; and 0.6 kPa O2 + 1.0 kPa CO2) were tested at 0, 0.5 and 1.0°C, in a 5x3 factorial arrangement. Fruit quality and ripening analyses were performed after eight-month storage plus seven days of shelf-life at 20°C. Oxygen partial pressures below 0.8 kPa increased the occurrence of internal breakdown and mealiness. The best ULO condition was 1.0 kPa O2 + plus 2.0 kPa CO2 at 1.0°C. The interaction of ULO conditions and storage temperatures shows the need of increasing O2 partial pressure at higher storage temperatures.
Resumo:
The objective of this work was to analyze the growth of champa fruit (Campomanesia lineatifolia) as a function of growing-degree days (GDD) in the municipality of Miraflores, in Boyacá, Colombia. Thirty trees were selected at random, and 100 flowers in full bloom were marked in each tree. From the 26th day after flowering until harvest, 10 samples were taken every 15 days to determine the fruit parameters and growth rate. Temperature was recorded to calculate the GDD. From flowering until harvest, 1,489.1 GDD were accumulated over 145 days. Dry and fresh matter mass of pulp, seed, and total fruit were fitted to a logistic growth model, and three growth stages (S1, S2 and S3) were defined. In the S1, growth was slow, and the relative growth remained nearly stable, whereas the absolute growth rate (AGR) increased slowly. In the S2, maximum growth was observed. In the S3, which corresponds to maturation, dry mass increased gradually, and the AGR decreased, while the fresh pulp and total mass did not cease to increase. The polar and equatorial diameters increased linearly, while the volume followed an exponential model. Champa fruit show a simple sigmoid growth curve.
Resumo:
The objective of this work was to evaluate an estimation system for rice yield in Brazil, based on simple agrometeorological models and on the technological level of production systems. This estimation system incorporates the conceptual basis proposed by Doorenbos & Kassam for potential and attainable yields with empirical adjusts for maximum yield and crop sensitivity to water deficit, considering five categories of rice yield. Rice yield was estimated from 2000/2001 to 2007/2008, and compared to IBGE yield data. Regression analyses between model estimates and data from IBGE surveys resulted in significant coefficients of determination, with less dispersion in the South than in the North and Northeast regions of the country. Index of model efficiency (E1') ranged from 0.01 in the lower yield classes to 0.45 in higher ones, and mean absolute error ranged from 58 to 250 kg ha‑1, respectively.
Resumo:
The objective of this work was to evaluate the feasibility of simulating maize yield in a sub‑tropical region of southern Brazil using the general large area model (Glam). A 16‑year time series of daily weather data were used. The model was adjusted and tested as an alternative for simulating maize yield at small and large spatial scales. Simulated and observed grain yields were highly correlated (r above 0.8; p<0.01) at large scales (greater than 100,000 km²), with variable and mostly lower correlations (r from 0.65 to 0.87; p<0.1) at small spatial scales (lower than 10,000 km²). Large area models can contribute to monitoring or forecasting regional patterns of variability in maize production in the region, providing a basis for agricultural decision making, and Glam‑Maize is one of the alternatives.
Resumo:
The objective of this work was to determine the inheritance of the long juvenile period trait in natural variants of the Doko, BR 9 (Savana), Davis, Embrapa 1 (IAS 5RC), and BR 16 soybean cultivars. Complete diallel crosses were made between the Doko and BR 16 cultivars and their variants. A 3:1 segregation ratio was observed in the F2 populations of the 'Doko' x Doko-18T, 'Doko' x Doko-Milionária, 'Davis' x São Carlos, and 'BR 9 (Savana)' x MABR92-836 (Savanão) crosses, indicating that the long juvenile period trait is controlled by a pair of recessive genes. The difference in late flowering between the Doko cultivar and both of its variants was caused by a recessive spontaneous mutation at the same genetic locus. However, the variants Doko-18T and Doko-Milionária are identical mutants that share a pair of genes that control the long juvenile period under short-day conditions. These mutants can be used in breeding programs to develop cultivars adapted to low-latitude tropical regions.
Resumo:
The objective of this work was to estimate the amounts of N fixed by cowpea in a traditional system and by cowpea and gliricidia in an agroforestry system in the Brazilian Northeast semiarid. The experiment was carried out in a randomized complete block design, in a split-plot arrangement, with four replicates, in the semiarid region of the state of Paraíba, Brazil. Plots consisted of agroforestry and traditional systems (no trees), and split-plots of the three crops planted between the tree rows in the agroforestry system. To estimate N fixation, plant samples were collected in the fourth growth cycle of the perennial species and in the fourth planting cycle of the annual species. In the agroforestry system with buffel grass and prickly-pear cactus, gliricidia plants symbiotically fix high proportions of N (>50%) and contribute with higher N amounts (40 kg ha-1 in leaves) than in the traditional system (11 kg ha-1 in grain and 18 kg ha-1 in straw). In the agroforestry system with maize and cowpea, gliricidia plants do not fix nitrogen, and N input is limited to the fixation by cowpea (2.7 kg ha-1), which is lower than in the traditional system due to its lower biomass production.
Resumo:
The objective of this work was to evaluate the in vitro maintenance of oil palm (Elaeis guineensis and E. oleifera) accessions under slow-growth conditions. Plants produced by embryo rescue were subject to 1/2MS culture medium supplemented with the carbohydrates sucrose, mannitol, and sorbitol at 1, 2, and 3% under 20 and 25±2ºC. After 12 months, the temperature of 20°C reduced plant growth. Sucrose is the most appropriate carbohydrate for maintaining the quality of the plants, whereas mannitol and sorbitol result in a reduced plant survival.
Resumo:
The objective of this work was to obtain prevalence estimates of cloudy vaginal mucus in artificially inseminated Holstein cows raised under intense heat, in order to assess the effect of meteorological conditions on its occurrence during estrus and to determine its effect on conception rate. In a first study, an association was established between the occurrence of cloudy vaginal mucus during estrus and the conception rate of inseminated cows (18,620 services), raised under intense heat (mean annual temperature of 22°C), at highly technified farms, in the arid region of northern Mexico. In a second study, data from these large dairy operations were used to assess the effect of meteorological conditions throughout the year on the occurrence of cloudy vaginal mucus during artificial insemination (76,899 estruses). The overall rate of estruses with cloudy vaginal mucus was 21.4% (16,470/76,899; 95% confidence interval = 21.1-21.7%). The conception rate of cows with clean vaginal mucus was higher than that of cows with abnormal mucus (30.6 vs. 22%). Prevalence of estruses with cloudy vaginal mucus was strongly dependent on high ambient temperature and markedly higher in May and June. Acceptable conception rates in high milk-yielding Holstein cows can only be obtained with cows showing clear and translucid mucus at artificial insemination.
Resumo:
Abstract: The objective of this work was to evaluate soil water dynamics in areas cultivated with forage cactus clones and to determine how environmental conditions and crop growth affect evapotranspiration. The study was conducted in the municipality of Serra Talhada, in the state of Pernambuco, Brazil. Crop growth was monitored through changes in the cladode area index (CAI) and through the soil cover fraction, calculated at the end of the cycle. Real evapotranspiration (ET) of the three evaluated clones was obtained as the residual term in the soil water balance method. No difference was observed between soil water balance components, even though the evaluated clones were of different genus and had different CAI increments. Accumulated ET was of 1,173 mm during the 499 days of the experiment, resulting in daily average of 2.35 mm. The CAI increases the water consumption of the Orelha de Elefante Mexicana clone. In dry conditions, the water consumption of the Miúda clone responds more slowly to variation in soil water availability. The lower evolution of the CAI of the IPA Sertânia clone, during the rainy season, leads to a higher contribution of the evaporation component in ET. The atmospheric demand controls the ET of clones only when there is higher soil water availability; in this condition, the water consumption of the Miúda clone decreases more rapidly with the increase of atmospheric demand.
Resumo:
Abstract: The objective of this work was to evaluate Trichoderma harzianum isolates for biological control of white mold in common bean (Phaseolus vulgaris). Five isolates were evaluated for biocontrol of white mold in 'Perola' common bean under field conditions, in the 2009 and 2010 crop seasons. A commercial isolate (1306) and a control treatment were included. Foliar applications at 2x109 conidia mL-1 were performed at 42 and 52 days after sowing (DAS), in 2009, and at 52 DAS in 2010. The CEN287, CEN316, and 1306 isolates decreased the number of Sclerotinia sclerotiorum apothecia per square meter in comparison to the control, in both crop seasons. CEN287, CEN316, and 1306 decreased white mold severity during the experimental period, when compared to the control.
Resumo:
A study was carried out at Embrapa Semi-Árido, Petrolina-PE, Brazil, aiming to understand the gas exchange process of the umbu tree (Spondias tuberosa Arr. Cam.) in the dry and rainy seasons. Stomatal conductance, transpiration, photosynthesis and internal CO2 concentration were obtained with a portable infrared gas analyzer (IRGA). During the dry season the umbu tree showed a much lower stomatal conductance early in the morning, as soon as the vapor pressure deficit increased, apparently affecting CO2 assimilation more than transpiration. The highest values were detected around 6:00 am but decreased to the lowest points between 10:00 am and 2:00 pm. During the rainy season, however, stomatal conductance, transpiration and photosynthesis were significantly higher, reaching the highest values between 8:00 and 10:00 am and the lowest around 2:00 pm. It was also observed at 4:00 pm, mainly during the rainy season, an increase on these variables indicating that the umbu tree exhibits a two-picked daily course of gas exchange.