262 resultados para Via digestiva
Resumo:
This work reports the development of polymeric nanocapsules containing lipoic acid prepared by interfacial deposition of poli(ε-caprolactona). The suspensions showed acid pH and encapsulation efficiencies from 77 to 90%. Zeta potential values were from -7.42 to -5.43 mV and particle sizes were lower than 340 nm with polidispersion lower than 0.3. The stability of nanocapsules within 28 days was evaluated in terms of pH, lipoic acid content, diameter, size distribution, zeta potential and measurements of relative light backscattering. The stability of formulations containing free lipoic acid was also evaluated. Nanoencapsulation drastically improved the physico-chemical stability of lipoic acid.
Resumo:
Alginate microparticles were prepared by an emulsion method aiming oral controlled release of antigens to fish. The effects of emulsification temperature and impeller type on particle morphology, average diameter, and size distribution were evaluated. Microparticles contaning formalin-killed Flavobacterium columnare cells (a model antigen) were prepared and characterized regarding bacterial release and particle stability when exposed to Nile tilapia (Oreochromis niloticus) typical gastrointestinal conditions. This methodology allowed the production of microparticles containing up to 14.3 g/L of bacterin, stable at a pH range from 2.0 to 9.0 for 12 h and smaller than 35 μm.
Resumo:
A computational method to simulate the changes in the electronic structure of Ga1-xMn xN was performed in order to improve the understanding of the indirect contribution of Mn atoms. This periodic quantum-mechanical method is based on density functional theory at B3LYP level. The electronic structures are compared with experimental data of the absorption edge of the GaMnN. It was observed that the indirect influence of Mn through the structural parameters can account for the main part of the band gap variation for materials in the diluted regime (x<0.08), and is still significant for higher compositions (x~0.18).
Resumo:
The objective of this work is to show the results of the in situ transesterification of sunflower seed oil with methanol on basic homogeneous and heterogeneous catalysis for the production of biodiesel. In homogeneous catalysis, the activity of KOH and K2CO3 were evaluated using the same oil:methanol ratio of 1:90. KOH showed to be more active than K2CO3, leading to total conversion in biodiesel after 1h reaction time. In the heterogeneous catalysis the activity of K2CO3/Al2O3 was comparable to the activity of K2CO3 bulk: 53.0 and 66.6% resp. The properties of samples of biodiesel produced by homogeneous and heterogeneous catalysis were evaluated and are in accordance with the recommended fuel properties.
Resumo:
The sulphur take an essential role in plants and it is one of the main nutrients in several metabolic processes. The dry ash oxidation, using alkaline oxidizers agent, is the simplest and most economical form for the oxidation of Organic S to sulfate in plants. The objective of this work is to propose a method for sulfur determination in plants samples using dry ash oxidation and agent oxidizers alkaline. The quantification of S-SO4(2-) in samples was accomplished by turbidimetric method. The results demonstrated that the proposed method for oxidation alkaline was appropriate.
Resumo:
Sensitive and selective spectrophotometric and spectrofluorimetric methods have been developed for determination of some drugs such as Pramipexole, Nebivolol, Carvedilol, and Eletriptan, which commonly contain secondary amino group. The subject methods were developed via derivatization of the secondary amino groups with 7-Chloro-4-Nitrobenzofurazon in borate buffer where a yellow colored reaction product was obtained and measured spectrophotometrically or spectrofluorimetrically. Concentration ranges were found as 2.0 to 250 μg mL-1 and 0.1 to 3.0 μg mL-1, for spectrophotometric and spectrofluorimetric study, respectively. The described methods can be easily applied by the quality control laboratories in routine analyses of these drugs in pharmaceutical preparations.
Resumo:
The role of the logistics in the design of synthetic pathways aimed at greenish is discussed. The influence on costs (of reagents, solvents and total), as well as on atomic productivity green metrics (atomic economy and E factor), of the position along the pathway of a step with low yield, or involving high dilution of the reagents or expensive reagents, has been evaluated by calculations on a linear pathway model. The results show the economic importance of Green Chemistry and provide useful information for pathway design or improvement.
Resumo:
In this work the production of synthesis gas from a mixture of methane (CH4) and carbon dioxide (CO2) by thermal plasma was studied. The best relation found for the gas mixture [CO2]/[CH4] was 1.3. Under the excess of CH4 in the gas mixture soot was formed and also benzene, indene and naphthalene were identified. The disulfides compounds in the gas mixture were degraded causing no interference in the synthesis gas production, suggesting no needs of pretreatment step for sulfurorganic compounds removal in the process
Resumo:
Soybean oil transesterification with ethanol was carried out in a batch reactor using USY zeolites modified with barium and strontium (15 wt.%) as catalysts. A series of three catalytic cycles were performed for each zeolite without any loss of activity. The biodiesel product was analyzed by HPLC and FT-Raman, and the catalysts by pyridine and CO2 adsorption. Ba/USY provided higher conversions (> 97%) than Sr/USY (< 75%). The increased catalytic activity of Ba/USY was attributed to two different effects: a larger number of basic sites; and a lower interaction between barium species and HUSY BrØnsted sites.
Resumo:
Anthocyanins extracted from picao, quaresmeira, petunia, flamboyant, purple ipe, lobeira, pata de vaca, jaboticaba, purple cabbage and jambul were evaluated as natural acid-base indicators. Anthocyanins in extracts were identified using HPLC/MS. Clear, rapid change in color at final-point titration was observed for extracts but only picao showed strong change in pH. Indirect determination of carbonate in limestone using a natural indicator was performed and results compared with phenolphthalein indicator and potentiometer titration. Optimal results were obtained with picao but other extracts showed good accuracy and precision.
Resumo:
By using the Monte Carlo simulation platform with probabilistic mathematical functions of the Boltzmann type, , having activation energy and temperature as parameters, it was possible to assess important dynamic aspects of homogeneous chemical reactions of the types A → B and A
B. The protocol proved a useful tool in work with the basic concepts of Kinetics and Thermodynamics allowing its application both in class activities and for assisting experimental procedures.
Resumo:
Poly(3-hydroxybutyrate), PHB, is a polymer with broad potential applications because of its biodegradability and biocompatibility. However, its high crystallinity is a limiting factor for many applications. To overcome this drawback, one strategy currently employed involves the reduction of the molecular weight of PHB with the concomitant formation of end-functionalized chains, such as those obtained via glycolysis. The glycolysis of PHB can be catalyzed by acid, base, or organometallic compounds. However, to our knowledge, there are no reports regarding PHB glycolysis catalyzed enzymatically. Among the major types of enzymes used in biocatalysis, the lipases stand out because they have the ability to catalyze reactions in both aqueous and organic media. Thus, in this study, we performed the enzymatic glycolysis of PHB using the lipase Amano PS (Pseudomonas cepacia) with ethane-1,2-diol (ethylene glycol) as the functionalizing agent. The results indicated that the glycolysis was successful and afforded hydroxyl-terminated oligomeric PHB polyols. Nuclear magnetic resonance spectra of the products showed characteristic signals for the terminal hydroxyl groups of the polyols, while thermogravimetric and differential scanning calorimetry analyses confirmed an increase in the thermal stability and a decrease in the crystallinity of the polyols compared with the starting PHB polymer, which were both attributed to the reduction in the molecular weight due to glycolysis.
Resumo:
Biological production of hydrogen through anaerobic fermentation has received increasing attention and offers a great potential as an alternative process for clean fuel production in the future. Considering biological systems for H2 production, anaerobic fermentation stands out, primarily due to its higher production of H2 compared with other biological processes. In addition the possibility of using different agro-industrial wastes as substrates opens up infinite possibilities. The development and implementation of sustainable processes for converting renewable materials into different value-added products is essential for the full exploitation of Brazilian agro-industrial wastes.
Resumo:
Cocaine is usually seized mixed with a wide variety of adulterants such as benzocaine, lidocaine, caffeine, and procaine. The forensic identification of cocaine in these street drug mixtures is normally performed using colorimetric testing kits, but these tests may suffer from interferences, producing false-positive results. Here, we describe the use of analytical techniques including attenuated total reflection Fourier transform infrared (ATR-FTIR) and ultraviolet-visible (UV-VIS) spectroscopies to distinguish between cocaine and other adulterants (lidocaine, promethazine, powdered milk and yeast) that yield positive results on the Scott test using the thiocyanate cobalt reagent. A further 13 substances were also analyzed using the Scott test.
Resumo:
This work shows the influence of several reactional parameters for obtaining graphene through successive steps of oxidation and exfoliation of bulk graphite (resulting in graphene oxide), followed by chemical reduction. The results showed that changes in temperature, reaction time, reducing agent and source of primary graphite lead to different surface compositions and stability in dispersion of graphene oxide. Also, the use of different reducing agents promoted different degrees of restoration of C=C bonds in the bidimensional structure of graphene.