168 resultados para Solid substrate cultivation
Resumo:
Mowing is one of the most important methods used to control weeds in organic farming, under the no-tillage system. This study aimed to evaluate the effects of three weed management techniques on weed development, using the weeds Bidens pilosa and Commelina benghalensis, in competition with organic corn {mowing at the three-leaf stage (14 days after corn emergence - DACE), mowing at the three- and six-leaf stage (14 and 25 DACE), and no mowing. Single cultivation with no mowing was also evaluated for these weeds. Mowings performed at 14 and 25 DACE prevented the production of B. pilosa seeds, ensuring efficient control of this species. However, the use of this technique was shown to be inefficient in the control of C. benghalensis.
Resumo:
The natural infestations are composed of numerous species that compete for environmental resources such as water, light, nutrients and space. The objective of this study was to evaluate the interference of mixed infestations Sorghum sudanense (sudangrass) and Eleusine indica (goosegrass) in the presence of soybean and corn. The experimental design was completely randomized with four replications and the experimental units consisted of plastic pots with a volume capacity of 8 L. The treatments were associations of plants S. sudanense and E. indica in the proportions 8:0, 6:2, 4:4,2:6 and 0:8, respectively, corresponding to 100, 75, 50, 25 and 0% S. sudanense and the reverse for E. indica. In all treatments remained constant four soybean or corn plants per experimental unit. The variables analyzed in the weeds were shoot dry weight, root, total and height of plants. The competitive analysis was accomplished through diagrams applied to replacement series experiment and indexes of competiveness. The results indicated that E. indica was more competitive than S. sudanense in mixed infestations with corn. Rather, S. sudanense was more competitive than E. indica, in mixed infestations with soybean, demonstrating differences in competitiveness among the weeds.
Resumo:
An experiment was laid down in a screen house to determine the distribution of weed seeds at different soil depths and periods of cultivation of sugarcane in Ilorin, Nigeria. Soil samples from different depth levels (0-10 cm, 11-20 cm and 21-30 cm) were collected after harvesting of canes from three different land use fields (continuous sugarcane cultivation for > 20 years, continuous sugarcane cultivation for < 10 years after long fallow period and continuous sugarcane cultivation for < 5 years after long fallow period) in November, 2012. One kilogram of the sieved composite soil samples was arranged in the screen house and watered at alternate days. Germinating weed seedlings were identified, counted and then pulled out for the period of 8 months. Land use and soil depth had a highly significant (p £ 0.05) effect on the total number of weeds that emerged from the soil samples. The 010 cm of the soil depth had the highest weed seedlings that emerged. There was an equal weed seed distribution at the 11-20 cm and 21-30 cm depths of the soil. Sugarcane fields which have been continuously cultivated for a long period of time with highly disturbing soil tillage practices tend to have larger seed banks in deeper soil layers (11-20 cm and 21-30 cm) while recently opened fields had significantly larger seed banks at the 0-10 cm soil sampling depth.
Resumo:
The irrigated rice production can be limited by various phytopathogenic agents, including root-knot nematodes (Meloidogyne spp.). Thus, the aim of this research was to check the host suitability of plant species most often found off-season and during rice cultivation, to root-knot nematode Meloidogyne graminicola, under two irrigation managements. Two experiments were conducted in a completely randomized design. In the first experiment seven plant species that occur in an area of rice cultivation, in fallow, off-season were evaluated. For the second experiment nine weed species infesting the irrigated rice culture were tested in rainfed and flooding conditions. The sixteen species, kept individually in pots with sterilized substrate, were inoculated with 5,000 eggs and second stage juveniles (J2) of nematode. BRS 410 IRGA rice plants inoculated with M.graminicola were used as control. Two months after inoculation, the root system of each plant was evaluated for number of galls and nematode reproduction factor. It was verified that the species of off-season of rice cultivation Sida rhombifolia, Raphanus raphanistrum, Spergula arvensis, Lotus corniculatus and Trifolium repens, and, during the cycle of rice cultivation, Aeschynomene denticulata, Leersia hexandra, are immune to nematode. The plant species off-season, Avena strigosa and Lolium multiflorum and of cultivation, Alternanthera philoxeroides, red rice, Echinochloa crusgalli, Cyperus difformis, Cyperus esculentus, Cyperus iria and Fimbristylis miliacea would behave as hosts of M.graminicola, mostly under rainfed conditions.
Resumo:
We used axillary buds as initial explants for hormone interaction studies required for in vitro cultivation of S. allagophylla. Callus production was achieved on gelled Murashige & Skoog medium (MS) supplemented with indole-3-acetic acid (IAA= 0.1 and 0.5 mg.l1 alone or combined with 6 benzylaminopurine) (BA= 0.01 and 0.1 mg.l-1). A hormone balance between IAA and BA that would encourage shoot bud development was not found. Nodal segments from axenic cultures grown in the presence of cytokinin (0.1 mg.11 of BA) without any auxin on MS medium with half-strength macronutrients were used as a standard explant source for subsequent experiments on optimum mineral culture media composition for S. allagophylla in vitro cultivation. We found that explants kept in vitro on gelled Gamborg et al. (B5) mineral composition culture medium showed better shoot and specially root growth than on MS medium. Comparisons of the ammonium and nitrate ratios of MS and B5 media indicate that B5 medium has a substantial reduced ammonium ion when compared to MS medium, as well as a lower total nitrogen level. The growth response pattern obtained in vitro may be evidence of the adaptation of this species to soils of poor mineral composition as found in the Brazilian cerrado, as well as an indication that nitrogen levels play a key role for S. allagophylla growth.
Resumo:
In bromeliad populations, amount of light and available substrates influence individuals spatial organization. In Atlantic Rainforest of Ilha Grande, the heliophylous bromeliad Neoregelia johannis is a large and abundant species. In this forest, it would be expected that N. johannis would occupy stable substrates, as large trunks, large branches, rock boulders or ground, with high sunlight, enough for the bromeliad survivor. In the present work, we analyzed the distribution and most used substrates of N. johannis in secondary forest. We analyzed the frequency of reproductive modes (sexual and vegetative) used by the bromeliad shoots, registering if the shoots were originated from seeds or by vegetative reproduction. The results indicated an aggregated distribution pattern (Ip = 0.052). The preferred substrate was boulders (91%), whereas tree trunks (6%) and the ground (3%) were rarely used. Small and fragile substrates are unstable to support large adults of this species, which may explain the predominant pattern of establishment over boulders within the secondary forest, as the presence of this substrate also results in more opened canopy cover. Approximately 50% of young individuals entered the population by vegetative reproduction. We conclude that the preferential habit and the aggregated distribution of N. johannis are due to the conjunction of preferred substrate with higher amount of light resulting from breaks in tree canopy over areas with rock blocks, and high frequency of recruitment by vegetative reproduction.
Resumo:
Previous studies showed that plants of Vernonia herbacea grown for one year under a limited nitrogen supply presented reduced growth and higher fructan content than plants treated with sufficient nitrogen supply. However, the total fructan production was similar in both plant groups due to the higher biomass of the underground reserve organ in nitrogen-sufficient (N-sufficient) plants. In the present study we aimed to evaluate if a stress growing condition under nitrogen-limited (N-limited) supply, following cultivation under N-sufficient supply would have a positive effect on fructan production. Plants cultivated during one year under N-sufficient supply (10.7 mmol L-1 N-NO3-) were separated in two groups. During the following six months, one group continued to receive the same treatment (control) while the other received an N-limited supply (1.3 mmol L-1 N-NO3-). Growth, photosynthesis and soluble carbohydrates were measured at days 0, 30, 60, 90 and 180. At day 30, plants transferred to N-limited supply showed a significant increase in growth and a decrease in fructan concentration, as a response to the stressing condition. However, in the following period growth was reduced and fructan concentration was increased, confirming the inverse relationship between nitrogen concentration and fructan content. After 180 days, although the fructan concentration in N-limited was significantly higher, with a fructan production of 6.0 g plant¹, the higher gain in rhizophore biomass after 18 months of cultivation in N-sufficient solution led to a fructan production of 8.3 g plant¹, thus surpassing the higher fructan concentration of N-limited plants.
Resumo:
Interphase cytogenetics, utilizing fluorescence in situ hybridization (FISH) techniques, has been successfully applied to diffuse and solid tissue specimens. Most studies have been performed on isolated cells, such as blood or bone marrow cells; a few have been performed on cells from body fluids, such as amniotic fluid, urine, sperm, and sputum. Mechanically or chemically disaggregated cells from solid tissues have also been used as single cell suspensions for FISH. Additionally, intact organized tissue samples represented by touch preparations or thin tissue sections have been used, especially in cancer studies. Advantages and pitfalls of application of FISH methodology to each type of specimen and some significant biological findings achieved are illustrated in this overview.
Resumo:
Insulin stimulates the tyrosine kinase activity of its receptor resulting in the phosphorylation of its cytosolic substrate, insulin receptor substrate-1 (IRS-1) which, in turn, associates with proteins containing SH2 domains. It has been shown that IRS-1 associates with the tyrosine phosphatase SHPTP2 in cell cultures. While the effect of the IRS-1/SHPTP2 association on insulin signal transduction is not completely known, this association may dephosphorylate IRS-1 and may play a critical role in the mitogenic actions of insulin. However, there is no physiological demonstration of this pathway of insulin action in animal tissues. In the present study we investigated the ability of insulin to induce association between IRS-1 and SHPTP2 in liver and muscle of intact rats, by co-immunoprecipitation with anti-IRS-1 antibody and anti-SHPTP2 antibody. In both tissues there was an increase in IRS-1 association with SHPTP2 after insulin stimulation. This association occurred when IRS-1 had the highest level of tyrosine phosphorylation and the decrease in this association was more rapid than the decrease in IRS-1 phosphorylation levels. The data provide evidence against the participation of SHPTP2 in IRS-1 dephosphorylation in rat tissues, and suggest that the insulin signal transduction pathway in rat tissues is related mainly to the mitogenic effects of the hormone.
Resumo:
Glucose-6-phosphate dehydrogenase (G6PD) activity and the affinity for its substrate glucose-6-phosphate were investigated under conditions similar to the physiological environment in terms of ionic strength (I: 0.188), cation concentration, pH 7.34, and temperature (37oC). A 12.4, 10.4 and 21.4% decrease was observed in G6PD B, G6PD A+ and G6PD A- activities, respectively. A Km increase of 95.1, 94.4 and 95.4% was observed in G6PD B, G6PD A+ and G6PD A-, respectively, leading to a marked decrease in affinity. In conclusion, the observation of the reduced activity and affinity for its natural substrate reflects the actual pentose pathway rate. It also suggests a much lower NADPH generation, which is crucial mostly in G6PD-deficient individuals, whose NADPH availability is poor.
Resumo:
Xylanase activity was isolated from crude extracts of Trichoderma harzianum strains C and 4 grown at 28oC in a solid medium containing wheat bran as the carbon source. Enzyme activity was demonstrable in the permeate after ultrafiltration of the crude extracts using an Amicon system. The hydrolysis patterns of different xylans and paper pulps by xylanase activity ranged from xylose, xylobiose and xylotriose to higher xylooligosaccharides. A purified ß-xylosidase from the Trichoderma harzianum strain released xylose, xylobiose and xylotriose from seaweed, deacetylated, oat spelt and birchwood xylans. The purified enzyme was not active against acetylated xylan and catalyzed the hydrolysis of xylooligosaccharides, including xylotriose, xylotetraose and xylopentaose. However, the enzyme was not able to degrade xylohexaose. Xylanase pretreatment was effective for hardwood kraft pulp bleaching. Hardwood kraft pulp bleached in the XEOP sequence had its kappa number reduced from 13.2 to 8.9 and a viscosity of 20.45 cp. The efficiency of delignification was 33%.
Resumo:
The protease ZapA, secreted by Proteus mirabilis, has been considered to be a virulence factor of this opportunistic bacterium. The control of its expression requires the use of an appropriate methodology, which until now has not been developed. The present study focused on the replacement of azocasein with fluorogenic substrates, and on the definition of enzyme specificity. Eight fluorogenic substrates were tested, and the peptide Abz-Ala-Phe-Arg-Ser-Ala-Ala-Gln-EDDnp was found to be the most convenient for use as an operational substrate for ZapA. A single peptide bond (Arg-Ser) was cleaved with a Km of 4.6 µM, a k cat of 1.73 s-1, and a catalytic efficiency of 376 (mM s)-1. Another good substrate for ZapA was peptide 6 (Abz-Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg-Gln-EDDnp) which was cleaved at a single bond (Phe-Ser) with a Km of 13.6 µM, a k cat of 3.96 s-1 and a catalytic efficiency of 291 (mM s)-1. The properties of the amino acids flanking the scissile bonds were also evaluated, and no clear requirement for the amino acid residue at P1 was found, although the enzyme seems to have a preference for a hydrophobic residue at P2.
Resumo:
The opportunistic bacterium Proteus mirabilis secretes a metalloprotease, ZapA, considered to be one of its virulence factors due to its IgA-degrading activity. However, the substrate specificity of this enzyme has not yet been fully characterized. In the present study we used fluorescent peptides derived from bioactive peptides and the oxidized ß-chain of insulin to determine the enzyme specificity. The bradykinin- and dynorphin-derived peptides were cleaved at the single bonds Phe-Ser and Phe-Leu, with catalytic efficiencies of 291 and 13 mM/s, respectively. Besides confirming already published cleavage sites, a novel cleavage site was determined for the ß-chain of insulin (Val-Asn). Both the natural and the recombinant enzyme displayed the same broad specificity, demonstrated by the presence of hydrophobic, hydrophilic, charged and uncharged amino acid residues at the scissile bonds. Native IgA, however, was resistant to hydrolysis by ZapA.
Resumo:
We developed an efficient method to prepare a hybrid inorganic-organic composite based on polyvinyl alcohol (PVA) and polysiloxane using the sol-gel disc technique. Antigen obtained from Yersinia pestis was covalently immobilized onto these discs with glutaraldehyde and used as solid phase in ELISA for antibody detection in serum of rabbits experimentally immunized with plague. Using 1.25 µg antigen per disc, a peroxidase conjugate dilution of 1:4,000 and a serum dilution of 1:200 were adequate for the establishment of the procedure. These values are similar to those used for PVA-glutaraldehyde discs, plasticized filter paper discs and the polyaniline-Dacron composite discs. This procedure is comparable to that which utilizes the adsorption of the antigen to conventional PVC plates, with the amount of antigen being one fourth that employed in conventional PVC plates (5 µg/well). In addition to the performance of the polysiloxane/PVA-glutaraldehyde disc as a matrix for immunodetection, its easy synthesis and low cost are additional advantages for commercial application.
Resumo:
Insulin receptor substrate-1 (IRS-1) is the main intracellular substrate for both insulin and insulin-like growth factor I (IGF-I) receptors and is critical for cell mitogenesis. Thyrotropin is able to induce thyroid cell proliferation through the cyclic AMP intracellular cascade; however, the presence of either insulin or IGF-I is required for the mitogenic effect of thyroid-stimulating hormone (TSH) to occur. The aim of the present study was to determine whether thyroid IRS-1 content is modulated by TSH in vivo. Strikingly, hypothyroid goitrous rats, which have chronically high serum TSH levels (control, C = 2.31 ± 0.28; methimazole (MMI) 21d = 51.02 ± 6.02 ng/mL, N = 12 rats), when treated with 0.03% MMI in drinking water for 21 days, showed significantly reduced thyroid IRS-1 mRNA content. Since goiter was already established in these animals by MMI for 21 days, we also evaluated IRS-1 expression during goitrogenesis. Animals treated with MMI for different periods of time showed a progressive increase in thyroid weight (C = 22.18 ± 1.21; MMI 5d = 32.83 ± 1.48; MMI 7d = 31.1 ± 3.25; MMI 10d = 33.8 ± 1.25; MMI 14d = 45.5 ± 2.56; MMI 18d = 53.0 ± 3.01; MMI 21d = 61.9 ± 3.92 mg, N = 9-15 animals per group) and serum TSH levels (C = 1.57 ± 0.2; MMI 5d = 9.95 ± 0.74; MMI 7d = 10.38 ± 0.84; MMI 10d = 17.72 ± 1.47; MMI 14d = 25.65 ± 1.23; MMI 18d = 35.38 ± 3.69; MMI 21d = 31.3 ± 2.7 ng/mL, N = 9-15 animals per group). Thyroid IRS-1 mRNA expression increased progressively during goitrogenesis, being significantly higher by the 14th day of MMI treatment, and then started to decline, reaching the lowest values by the 21st day, when a significant reduction was detected. In the liver of these animals, however, a significant decrease of IRS-1 mRNA was detected after 14 days of MMI treatment, a mechanism probably involved in the insulin resistance that occurs in hypothyroidism. The increase in IRS-1 expression during goitrogenesis may represent an important event associated with the increased rate of cell mitosis promoted by TSH and indicates that insulin and IGF-I are important co-mitogenic factors in vivo, possibly acting through the activation of IRS-1.