195 resultados para Semiarid. Cactaceae. Algaroba. Bioactive compounds. Food functionality. Sensory evaluation
Resumo:
The sensory quality of 'Douradão' peaches cold stored in three different conditions of controlled atmosphere (CA1, CA2, CA3 and Control) was studied. After 14, 21 and 28 days of cold storage, samples were withdrawn from CA and kept for 4 days in ambient air for ripening. The sensory profile of the peaches and the descriptive terminology were developed by methodology based on the Quantitative Descriptive Analysis (QDA). The panelists consensually defined the sensory descriptors, their respective reference materials and the descriptive evaluation ballot. Fourteen panelists were selected based on their discrimination capacity and reproducibility. Seven descriptors were generated showing similarities and differences between samples. The data were analyzed by ANOVA, Tukey test and Principal Component Analysis (PCA). Results showed significant differences in the sensory profiles of the peaches. The PCA showed that CA2 and CA3 treatments were more characterized by the fresh peach flavor, fresh peach appearance, juiciness and flesh firmness, and were effective in keeping the good quality of the 'Douradão' peaches during the 28 days of cold storage. The Control and CA1 treatments were characterized by the mealiness and were ineffective for quality maintenance of the fruits during cold storage.
Resumo:
Cajá-manga (Spondias cytherea) is a fruit with intense aroma and a sweet sour taste, thus being very appreciated. Its peel, in spite of being more fibrous, is tender and many times consumed with the pulp. The peel is a part of foods normally discarded, but many times, it is rich in taste and fibers, representing an option at the elaboration of new foods. Since there are no reports in the literature on the use of cajá-manga peel for jelly making, this work had the purpose of developing and evaluating this product. Based on the results, it was noted that the peels presented higher contents of protein, lipids, ashes, food fiber, total carbohydrates and pectin, and lower content of moisture, when compared to the pulp. The peel and the pulp (control) jellies presented the following physical-chemical characteristics: moisture, 29.5 and 34.2%; proteins, 0.19 and 0.27%; lipids, 0.11 and 0.16%; total sugars, 56.5 and 65.5%; and total soluble solids, 69 and 66 ºBrix, respectively. The sensory analysis indicated that the product elaborated from the peel presented satisfactory acceptance for all the assessed attributes: appearance, color, odor, texture, taste and global evaluation. It is concluded that the total substitution of the pulp by the peel in the formulation, results in a product with good nutritional value with no sensory damages.
Resumo:
The aging process of alcoholic beverages is generally conducted in wood barrels made with species from Quercus sp. Due to the high cost and the lack of viability of commercial production of these trees in Brazil, there is demand for new alternatives to using other native species and the incorporation of new technologies that enable greater competitiveness of sugar cane spirit aged in Brazilian wood. The drying of wood, the thermal treatment applied to it, and manufacturing techniques are important tools in defining the sensory quality of alcoholic beverages after being placed in contact with the barrels. In the thermal treatment, several compounds are changed by the application of heat to the wood and various studies show the compounds are modified, different aromas are developed, there is change in color, and beverages achieve even more pleasant taste, when compared to non-treated woods. This study evaluated the existence of significant differences between hydro-alcoholic solutions of sugar cane spirits elaborated from different species of thermo-treated and non-treated wood in terms of aroma. An acceptance test was applied to evaluate the solutions preferred by tasters under specific test conditions.
Resumo:
The volatile compositions from organic and conventional passion fruit pulps produced in Brazil were investigated. The pulps were also physicochemically characterized. The volatile compounds from the headspace of the passion fruit pulp were stripped to a Porapak Q trap for 2 hours; they were eluted with 300 µL of dichloromethane, separated by gas chromatography/flame ionisation detection and identified through gas chromatography/mass spectrometry. Both pulps conformed to the requirements of the Brazilian legislation, indicating they were suitable to be industrialized and consumed. A total of 77 compounds were detected in the headspace of the passion fruit pulps - 60 of which were identified, comprising 91% of the total chromatogram area. The major compounds were the following: ethyl butanoate, 52% and 57% of the total relative area of the chromatogram for the organic and conventional passion fruit pulps, respectively; ethyl hexanoate, 22% and 9%, respectively; and hexyl butanoate, 2% and 5%, respectively. The aroma of the organic passion fruit pulp is mainly related to the following volatile compounds: ethyl hexanoate, methyl hexanoate, β-myrcene and D-limonene. The conventional passion fruit pulp presented methyl butanoate, butyl acetate, hexanal, 1-butanol, butyl butanoate, trans-3-hexenyl acetate, cis-3-hexen-1-ol, butyl hexanoate, hexyl butanoate, 3-hexenyl butanoate and 3-hexenyl hexanoate as the main volatile compounds for aroma.
Resumo:
The aim of this work was to evaluate spices and industrial ingredients for the development of functional foods with high phenolic contents and antioxidant capacity. Basil, bay, chives, onion, oregano, parsley, rosemary, turmeric and powdered industrial ingredients (β-carotene, green tea extract, lutein, lycopene and olive extract) had their in vitro antioxidant capacity evaluated by means of the Folin-Ciocalteu reducing capacity and DPPH scavenging ability. Flavonoids identification and quantification were performed by High Performance Liquid Chromatography (HPLC). The results showed that spices presented a large variation in flavonoids content and in vitro antioxidant capacity, according to kind, brand and batches. Oregano had the highest antioxidant capacity and parsley had the highest flavonoid content. The industrial ingredient with the highest antioxidant capacity was green tea extract, which presented a high content of epigalocatechin gallate. Olive extract also showed a high antioxidant activity and it was a good source of chlorogenic acid. This study suggests that oregano, parsley, olive and green tea extract have an excellent potential for the development of functional foods rich in flavonoids as antioxidant, as long as the variability between batches/brands is controlled.
Resumo:
The purpose of this study was to evaluate the acceptability and the microbiological safety of uncured fresh chicken sausages with reduced fat content, considering the scientific evidence that correlated cancer and cardiovascular diseases to this diet. Two formulations of uncured fresh chicken sausage were processed using different concentrations of cochineal carmine pigment, rosemary extracts and synthetic antioxidants, which are used to give color, appearance and pleasant flavor to the products. Then, instrumental color (L*, a*, b*, C* and h*), microbial contamination and sensory tests (ranking and acceptance) were used to evaluate the quality of the uncured chicken sausages. The instrumental color (chroma and hue) and the sensory properties of the A and B uncured sausages were similar to the commercial cured sausage (C). However, the sensory color and appearance of samples A and B were statistically higher than those of the commercial uncured sausages D, which are prepared without the addition of nitrite or pigments. The results showed that it is possible to produce safe and high-quality uncured fresh chicken sausage with reduced fat content, using natural pigments and antioxidants.
Resumo:
In Brazil, several little economically explored fruits have good potential as raw material for the agro-industry. This study aimed to produce and determine the physical-chemical and sensory characteristics of light jambolan jelly. This fruit has intense purple color, which gave the jellies - both standard and light - a quite attractive visual aspect. The light jellies exhibited similar physical-chemical characteristics to the ones developed through the conventional method and; with the proportion of sweeteners used, the caloric values of the formulations were reduced to the range of 41 to 53%, attending the requirements of the Brazilian legislation for this type of product. The sensory profile obtained for the 4 light formulations developed, clearly showed the tasters' preference for the jelly elaborated with the association of cyclamate and saccharin. Thus, the results revealed good perspectives for the application of this fruit in the food industry.
Resumo:
Plum (Prunus salicina Lindl. cv. Harry Pickstone), a China indigenous fruit, is widely produced and consumed in countries such as Japan and Brazil. The practice of thinning is common in horticulture and the fruits removed are discarded as waste. Like the great majority of vegetables, these thinning discards also contain essential oils which have not been investigated until the present time. The extraction of the plum thinning discards volatile oil, through the hydrodistillation method, produced a yield of 0.06% (m/m) and a total of 21 components were identified, with 11 of them being responsible for 72,9% of the total oil composition. The major compounds determined through GC and GC-MS were Z-α-bisabolene (13.7%), n-hexadecanoic acid (12.7%), phytol (12.7%), and β-caryophyllene (10.4%).
Resumo:
Wine production in the northern Curitiba, Paraná, Brazil, specifically the communes of Colombo and Almirante Tamandaré, is based mainly on the utilization of Vitis labrusca grapes var. Bordô (Ives). Total sugar content, pH, and total acidity were analyzed in red wine samples from 2007 and 2008 vintages following official methods of analysis. Moreover, total phenolic, flavonoid, and tannin contents were analyzed by colorimetric methodologies and the antioxidant activity was determined using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical methodology. Phenolic compounds were identified by high performance liquid chromatography. The total phenolic content of wine samples presented concentrations varying between 1582.35 and 2896.08 mg gallic acid.L-1 since the major part corresponds to flavonoid content. In these compounds' concentration range, a direct relationship between phenolic compounds content and levels of antioxidant activity was not observed. Among the identified phenolic compounds, chlorogenic, caffeic, and syringic acids were found to be the major components. Using three principal components, it was possible to explain 81.36% of total variance of the studied samples. Principal Components Analysis does not differentiate between vintages.
Resumo:
The physiological state of a fruit is closely related to ripening and climatic conditions during the growing period when the fruit undergo changes in color, texture, and flavor. The ripening of the fruit can involve a complex series of biochemical reactions with alteration in enzymes activities, phenols, tannins, and ascorbic acid. The activity of enzymes (carboximethylcellulase, polygalacturonase, and pectinlyase), the total concentration of phenolic compounds, condensed tannins, and vitamin C in five stages of maturation were studied. Significant changes were observed between the maturity stages. The phenolic compounds were higher at green stage (705.01 ± 7.41); tannins were higher at green/purple stage (699.45 ± 0.22). The results showed that the ascorbic acid levels of the pulp varied significantly from 50.81 ± 1.43 to 6.61 ± 1.04 mg.100 g-1 during maturation. The specific activity of pectin lyase was higher at green stage (1531.90 ± 5.83). The specific activity of polygalacturonase was higher at mature stage (1.83 ± 0.0018). The specific activity of carboximetilcelulose was higher at ripe mature stage (4.61 ± 0.0024). The low ascorbic acid content found in jambolan fruit indicates that this fruit is not a rich source of this nutrient; however, other characteristics can make jambolan products fit for human consumption.
Resumo:
The peel of jaboticaba is attractive regarding its nutritional, functional and sensory aspects. However, its use for consumption is still restricted due to the need of technological development in order to obtain processed preparations for its inclusion in the human diet. The purpose of this study was to produce jelly using the peel of jaboticaba and to characterize it chemically and sensorially. Diferent formulations were prepared, all with 50% of sugar and with different proportions of peel, pulp and pectin. The formulations, which were tested for preference, were the following: F1a (80% of peel, 20% of pulp and 0.5% of pectin) and F3b (50% of peel, 50% pulp and 1.0% of pectin). These formulations showed chemical composition of 216.44 mg phenolic compounds, 148.00 mg gallic acid.100 g-1, 10.42 mg flavonoids, and 12.10 mg catechin.100 g-1, and 80% acceptability index. The peel presented higher levels of nutrients than the pulp, especially as source of fiber, carbohydrates and natural pigments. Results indicated the feasibility of technological nutritional harnessing of the jaboticaba peel in obtaining jelly. The results also indicated good sensory and nutritional characteristics, acceptability, and antioxidant properties of natural pigments.
Resumo:
The aim of this study was to evaluate the content of the phenolic compounds and anthocyanins and the antioxidant activity of blueberry (Vaccinium sp.) cultivars grown in Brazil. The Folin-Ciocalteau method was applied in order to quantify the phenolic compounds and ABTS, DPPH, FRAP, and β-carotene/linoleic acid methods were applied in order to evaluated antioxidant activity. The phenolic compounds content ranged from 274.48 to 694.60 mg GAE.100 g-1 of fresh weight (FW). Anthocyanins content ranged from 40.62 to 378.31 mg.100 g-1 FW for Bluecrop and Tifblue cultivars, respectively. Antioxidant activities assessed by ABTS, DPPH and FRAP methods presented significant differences among the studied cultivars ranging from 1238.48 to 2445.96, 1014.24 to 2055.06 and 699.78 to 1740.25 µmol TEAC.100 g-1 FW, respectively. The results confirm the blueberry as a source of phenolic compounds with high antioxidant activity and also show that there are different levels of concentrations of phenolic compounds and antioxidant activity according to the cultivar and production location.
Resumo:
Simultaneous Distillation-Extraction (SDE) and headspace-solid phase microextraction (HS-SPME) combined with GC-FID and GC-MS were used to analyze volatile compounds from plum (Prunus domestica L. cv. Horvin) and to estimate the most odor-active compounds by application of the Odor Activity Values (OAV). The analyses led to the identification of 148 components, including 58 esters, 23 terpenoids, 14 aldehydes, 11 alcohols, 10 ketones, 9 alkanes, 7 acids, 4 lactones, 3 phenols, and other 9 compounds of different structures. According to the results of SDE-GC-MS, SPME-GC-MS and OAV, ethyl 2-methylbutanoate, hexyl acetate, (E)-2-nonenal, ethyl butanoate, (E)-2-decenal, ethyl hexanoate, nonanal, decanal, (E)-β-ionone, Γ-dodecalactone, (Z)-3-hexenyl acetate, pentyl acetate, linalool, Γ-decalactone, butyl acetate, limonene, propyl acetate, Δ-decalactone, diethyl sulfide, (E)-2-hexenyl acetate, ethyl heptanoate, (Z)-3-hexenol, (Z)-3-hexenyl hexanoate, eugenol, (E)-2-hexenal, ethyl pentanoate, hexyl 2-methylbutanoate, isopentyl hexanoate, 1-hexanol, Γ-nonalactone, myrcene, octyl acetate, phenylacetaldehyde, 1-butanol, isobutyl acetate, (E)-2-heptenal, octadecanal, and nerol are characteristic odor active compounds in fresh plums since they showed concentrations far above their odor thresholds.
Resumo:
The aim of this study was to use a factorial design approach for developing a palatable and stable soy-based dessert with the addition of Soy Protein (SP), oligofructose, and Passion Fruit Juice (PFJ). Panelists (n = 50) used a seven-point hedonic scale to assess the overall liking, degree of liking of creaminess, taste, and color of the desserts. In addition, the samples were submitted to a preference ranking test in order to evaluate the products' preference. Water Holding Capacity (WHC) and backscattering (BS) measures were also determined to assess the physical stability of the trials. Sample F3 (35% PFJ and 2% SP) was the only one that presented a WHC index of 94.8%; moreover, none of the developed samples had synerisis after 72 hours of storage indicating adequate physical stability of the emulsion process. Samples F2 (25% PFJ, and 3.0% SP), F4 (35% PFJ, and 3.0% SP), and F5 (30% PFJ, and 2.5% SP) presented mean hedonic scores above 'slightly liked' for all sensory attributes. The acceptance index of samples varied from 62.50 to 88% showing the great sensory potential of such products.
Resumo:
It is important to understand how changes in the product formulation can modify its characteristics. Thus, the objective of this study was to investigate the effect of whey protein concentrate (WPC) on the texture of fat-free dairy desserts. The correlation between instrumental and sensory measurements was also investigated. Four formulations were prepared with different WPC concentrations (0, 1.5, 3.0, and 4.5 wt. (%)) and were evaluated using the texture profile analysis (TPA) and rheology. Thickness was evaluated by nine trained panelists. Formulations containing WPC showed higher firmness, elasticity, chewiness, and gumminess and clearly differed from the control as indicated by principal component analysis (PCA). Flow behavior was characterized as time-dependent and pseudoplastic. Formulation with 4.5% WPC at 10 °C showed the highest thixotropic behavior. Experimental data were fitted to Herschel-Bulkley model. The addition of WPC contributed to the texture of the fat-free dairy dessert. The yield stress, apparent viscosity, and perceived thickness in the dairy desserts increased with WPC concentration. The presence of WPC promotes the formation of a stronger gel structure as a result of protein-protein interactions. The correlation between instrumental parameters and thickness provided practical results for food industries.