250 resultados para Selection against hybrids
Resumo:
This paper deals with problems on population genetics in Hymenoptera and particularly in social Apidae. 1) The studies on populations of Hymenoptera were made according to the two basic types of reproduction: endogamy and panmixia. The populations of social Apinae have a mixed method of reproduction with higher percentage of panmixia and a lower of endogamy. This is shown by the following a) males can enter any hive in swarming time; b) males of Meliponini are expelled from hives which does not need them, and thus, are forced to look for some other place; c) Meliponini males were seen powdering themselves with pollen, thus becoming more acceptable in any other hive. The panmixia is not complete owing to the fact that the density of the breeding population as very low, even in the more frequent species as low as about 2 females and 160 males per reproductive area. We adopted as selection values (or survival indices) the expressions according to Brieger (1948,1950) which may be summarised as follows; a population: p2AA + ²pq Aa + q2aa became after selection: x p2AA + 2pq Aa + z q²aa. For alge-braics facilities Brieger divided the three selective values by y giving thus: x/y p2 AA + y/y 2 pq Aa + z/y q²aa. He called x/y of RA and z/y of Ra, that are survival or selective index, calculated in relation to the heterozygote. In our case all index were calculated in relation to the heterozygote, including the ones for haploid males; thus we have: RA surveval index of genotype AA Ra surveval index of genotype aa R'A surveval index of genotype A R'a surveval index of genotype a 1 surveval index of genotype Aa The index R'A ande R'a were equalized to RA and Ra, respectively, for facilities in the conclusions. 2) Panmitic populations of Hymenoptera, barring mutations, migrations and selection, should follow the Hardy-Weinberg law, thus all gens will be present in the population in the inicial frequency (see Graphifc 1). 3) Heterotic genes: If mutation for heterotic gene ( 1 > RA > Ra) occurs, an equilibrium will be reached in a population when: P = R A + Ra - 2R²a _____________ (9) 2(R A + Ra - R²A - R²a q = R A + Ra - 2R²A _____________ (10) 2(R A + Ra - R²A - R²a A heterotic gene in an hymenopteran population may be maintained without the aid of new mutation only if the survival index of the most viable mutant (RA) does not exced the limiting value given by the formula: R A = 1 + √1+Ra _________ 4 If RA has a value higher thah the one permitted by the formula, then only the more viable gene will remain present in the population (see Graphic 10). The only direct proof for heterotic genes in Hymenoptera was given by Mackensen and Roberts, who obtained offspring from Apis mellefera L. queens fertilized by their own sons. Such inbreeding resulted in a rapid loss of vigor the colony; inbred lines intercrossed gave a high hybrid vigor. Other fats correlated with the "heterosis" problem are; a) In a colony M. quadrifasciata Lep., which suffered severely from heat, the percentage of deths omong males was greater .than among females; b) Casteel and Phillips had shown that in their samples (Apis melifera L). the males had 7 times more abnormalities tian the workers (see Quadros IV to VIII); c) just after emerging the males have great variation, but the older ones show a variation equal to that of workers; d) The tongue lenght of males of Apis mellifera L., of Bombus rubicundus Smith (Quadro X), of Melipona marginata Lep. (Quadro XI), and of Melipona quadrifasciata Lep. Quadro IX, show greater variationthan that of workers of the respective species. If such variation were only caused by subviables genes a rapid increasse of homozigoty for the most viable alleles should be expected; then, these .wild populations, supposed to be in equilibrium, could .not show such variability among males. Thus we conclude that heterotic genes have a grat importance in these cases. 4) By means of mathematical models, we came to the conclusion tht isolating genes (Ra ^ Ra > 1), even in the case of mutations with more adaptability, have only the opor-tunity of survival when the population number is very low (thus the frequency of the gene in the breeding population will be large just after its appearence). A pair of such alleles can only remain present in a population when in border regions of two races or subspecies. For more details see Graphics 5 to 8. 5) Sex-limited genes affecting only females, are of great importance toHymenoptera, being subject to the same limits and formulas as diploid panmitic populations (see formulas 12 and 13). The following examples of these genes were given: a) caste-determining genes in the genus Melipona; b) genes permiting an easy response of females to differences in feeding in almost all social Hymenoptera; c) two genes, found in wild populations, one in Trigona (Plebéia) mosquito F. SMITH (quadro XII) and other in Melipona marginata marginata LEP. (Quadro XIII, colonies 76 and 56) showing sex-limited effects. Sex-limited genes affecting only males do not contribute to the plasticity or genie reserve in hymenopteran populations (see formula 14). 6) The factor time (life span) in Hymenoptera has a particular importance for heterotic genes. Supposing one year to be the time unit and a pair of heterotic genes with respective survival indice equal to RA = 0, 90 and Ra = 0,70 to be present; then if the life time of a population is either one or two years, only the more viable gene will remain present (see formula 11). If the species has a life time of three years, then both alleles will be maintained. Thus we conclude that in specis with long lif-time, the heterotic genes have more importance, and should be found more easily. 7) The colonies of social Hymenoptera behave as units in competition, thus in the studies of populations one must determine the survival index, of these units which may be subdivided in indice for egg-laying, for adaptive value of the queen, for working capacity of workers, etc. 8) A study of endogamic hymenopteran populations, reproduced by sister x brother mating (fig. 2), lead us to the following conclusions: a) without selection, a population, heterozygous for one pair of alleles, will consist after some generations (theoretically after an infinite number of generation) of females AA fecundated with males A and females aa fecundated with males a (see Quadro I). b) Even in endogamic population there is the theoretical possibility of the presence of heterotic genes, at equilibrium without the aid of new mutations (see Graphics 11 and 12), but the following! conditions must be satisfied: I - surveval index of both homozygotes (RA e Ra) should be below 0,75 (see Graphic 13); II - The most viable allele must riot exced the less viable one by more than is permited by the following formula (Pimentel Gomes 1950) (see Gra-fic 14) : 4 R5A + 8 Ra R4A - 4 Ra R³A (Ra - 1) R²A - - R²a (4 R²a + 4 Ra - 1) R A + 2 R³a < o Considering these two conditions, the existance of heterotic genes in endogamic populations of Hymenoptera \>ecames very improbable though not - impossible. 9) Genie mutation offects more hymenopteran than diploid populations. Thus we have for lethal genes in diploid populations: u = q2, and in Hymenoptera: u = s, being u the mutation ratio and s the frequency of the mutant in the male population. 10) Three factors, important to competition among species of Meliponini were analysed: flying capacity of workers, food gathering capacity of workers, egg-laying of the queen. In this connection we refer to the variability of the tongue lenght observed in colonies from several localites, to the method of transporting the pollen in the stomach, from some pots (Melliponi-ni storage alveolus) to others (e. g. in cases of pillage), and to the observation that the species with the most populous hives are almost always the most frequent ones also. 11) Several defensive ways used for Meliponini to avoid predation are cited, but special references are made upon the camouflage of both hive (fig. 5) and hive entrance (fig. 4) and on the mimetism (see list in page ). Also under the same heading we described the method of Lestrimelitta for pillage. 12) As mechanisms important for promoting genetic plasticity of hymenopteran species we cited: a) cytological variations and b) genie reserve. As to the former, duplications and numerical variations of chromosomes were studied. Diprion simile ATC was cited as example for polyploidy. Apis mellife-ra L. (n = 16) also sugests polyploid origen since: a) The genus Melipona, which belongs to a" related tribe, presents in all species so far studied n = 9 chromosomes and b) there occurs formation of dyads in the firt spermatocyte division. It is su-gested that the origin of the sex-chromosome of Apis mellifera It. may be related to the possible origin of diplo-tetraploidy in this species. With regards to the genie reserve, several possible types of mutants were discussed. They were classified according to their survival indices; the heterotic and neutral mutants must be considered as more important for the genie reserve. 13) The mean radius from a mother to a daghter colony was estimated as 100 meters. Since the Meliponini hives swarm only once a year we may take 100 meters a year as the average dispersion of female Meliponini in ocordance to data obtained from Trigona (tetragonisca) jaty F. SMITH and Melipona marginata LEP., while other species may give different values. For males the flying distance was roughly estimated to be 10 times that for females. A review of the bibliography on Meliponini swarm was made (pg. 43 to 47) and new facts added. The population desity (breeding population) corresponds in may species of Meliponini to one male and one female per 10.000 square meters. Apparently the males are more frequent than the females, because there are sometimes many thousands, of males in a swarm; but for the genie frequency the individuals which have descendants are the ones computed. In the case of Apini and Meliponini, only one queen per hive and the males represented by. the spermatozoos in its spermateca are computed. In Meliponini only one male mate with the queen, while queens of Apis mellijera L. are fecundated by an average of about 1, 5 males. (Roberts, 1944). From the date cited, one clearly sees that, on the whole, populations of wild social bees (Meliponini) are so small that the Sewall Wright effect may become of great importance. In fact applying the Wright's formula: f = ( 1/aN♂ + 1/aN♀) (1 - 1/aN♂ + 1/aN♀) which measures the fixation and loss of genes per generation, we see that the fixation or loss of genes is of about 7% in the more frequent species, and rarer species about 11%. The variation in size, tergite color, background color, etc, of Melipona marginata Lep. is atributed to this genetic drift. A detail, important to the survival of Meliponini species, is the Constance of their breeding population. This Constance is due to the social organization, i. e., to the care given to the reproductive individuals (the queen with its sperm pack), to the way of swarming, to the food storage intended to control variations of feeding supply, etc. 14) Some species of the Meliponini are adapted to various ecological conditions and inhabit large geographical areas (e. g. T. (Tetragonisca jaty F. SMITH), and Trigona (Nanno-trigona testaceicornis LEP.) while others are limited to narrow regions with special ecological conditions (e. g. M. fuscata me-lanoventer SCHWARZ). Other species still, within the same geographical region, profit different ecological conditions, as do M. marginata LEP. and M. quadrifasciata LEP. The geographical distribution of Melipona quadrifasciata LEP. is different according to the subspecies: a) subsp anthidio-des LEP. (represented in Fig. 7 by black squares) inhabits a region fron the North of the S. Paulo State to Northeastern Brazil, ,b) subspecies quadrifasciata LEP., (marked in Fig. 7 with black triangles) accurs from the South of S. Paulo State to the middle of the State of Rio Grande do Sul (South Brazil). In the margined region between these two areas of distribution, hi-brid colonies were found (Fig. 7, white circles); they are shown with more details in fig. 8, while the zone of hybridization is roughly indicated in fig. 9 (gray zone). The subspecies quadrifasciata LEP., has 4 complete yellow bands on the abdominal tergites while anthidioides LEP. has interrupted ones. This character is determined by one or two genes and gives different adaptative properties to the subspecies. Figs. 10 shows certains meteorological isoclines which have aproximately the same configuration as the limits of the hybrid zone, suggesting different climatic adaptabilities for both genotypes. The exis-tance of a border zone between the areas of both subspecies, where were found a high frequency of hybrids, is explained as follows: being each subspecies adapted to a special climatic zone, we may suppose a poor adaptation of either one in the border region, which is also a region of intermediate climatic conditions. Thus, the hybrids, having a combination of the parent qualities, will be best adapted to the transition zone. Thus, the hybrids will become heterotic and an equilibrium will be reached with all genotypes present in the population in the border region.
Resumo:
Shell selection by the hermit crab Paguristes tortugae Schmitt, 1933 from Anchieta Island (Brazil) was analyzed using the six most frequently occupied shell species in the field and taking into account the sexual condition of the individuals, the shell size and the shell species. The experiments were conducted under laboratory conditions and the shell species preference was estimated on the basis of the frequency that each species was chosen by the individuals. The preferred shell species and size were determined by regression analysis. The highest correlation coefficients were obtained for the relations between the hermit dimensions and shell dry weight. The ovigerous females preferred shells with larger internal volume: Leucozonia nassa (Gmelin, 1791) and Cerithium atratum (Born, 1778). In the experiment of shell size, males preferred heavier shells whereas females selected the shape characteristics of the shell, such as the aperture and the internal volume, which are probably related to the growth and offspring guarantee, respectively. In general, and independent of sex condition, P. tortugae showed significant selection among all shells utilized. The results suggest that shell selection by P. tortugae involves sexual and reproductive condition preferences.
Resumo:
This study aimed to evaluate the water depth selection during foraging, the efficiency in prey capture, and the food items captured by Casmerodius albus (Linnaeus, 1758) and Egretta thula (Molina, 1782). The work was conducted at an urban lagoon, Lagoa Rodrigo de Freitas, Rio de Janeiro. Four transects were made each month (two in the morning and two in the afternoon) for six months. When the birds were detected foraging, the water depth and the types of prey captured were recorded. There was no significant relationship between the foraging efficiencies of the two species. However, they differed in relation to the water depth when foraging, and also in the food items captured. Casmerodius albus captured mainly fishes while Egretta thula captured mainly invertebrates. The results suggest that the differences in water depth when foraging and the food items captured allow a differential use of the food resources available by C. albus and E. thula at Lagoa Rodrigo de Freitas.
Resumo:
In the Atlantic forest of Rio de Janeiro, Callithrix aurita (É. Geoffroy in Humboldt, 1812) is a native species vulnerable to extinction and C. jacchus (Linnaeus, 1758) and C. penicillata (É. Geoffroy, 1812) are invasive species. The major threats to the native species are habitat degradation and hybridization, although there are currently no genetic data about natural hybrids available. Previous studies have revealed that species of the Callithrix genus are extremely homogeneous in their karyotypes with the exceptions of the morphology and size of the Y chromosome and its nucleolar organizer region (NOR) banding pattern. Three male marmosets captured in the wild in Guapimirim municipality, Rio de Janeiro, Brazil, considered as possible hybrids between C. aurita and C. jacchus or C. penicillata on the basis of pelage pattern, were cytogenetically studied. Metaphase chromosomes were obtained by using short-term lymphocyte cultures and Ag-NOR staining was performed. The hybrids karyotypes were 2n=46, 14 uni- and 30 bi-armed autosomes, a median size submetacentric X and NOR bearing autosomes, being compatible with that observed for the genus. In the three individuals studied, Y chromosomes were similar to those found for C. aurita, without NORs. The data obtained suggest the involvement of C. aurita in natural hybridization with one of the invasive species. We discuss the possible consequences of this hybridization.
Resumo:
ABSTRACT Male gladiator frogs of Hypsiboas Wagler, 1830 build nests on available substrate surrounding ponds and streams where female spawn eggs during the breeding period. Although gladiator frogs seem to show plasticity in the way they construct their nests, there is no study reporting if these species present preferences about microhabitat conditions for nest-building (mainly under subtropical climate). Predation pressure and environmental conditions have been considered major processes shaping the great diversity of reproductive strategies performed by amphibians, but microhabitat conditions should explain where to build a nest as well as how nest looks. This study aimed to test nest site selection for nest-building by Hypsiboas faber(Wied-Neuwied, 1821), determining which factors are related to nest site selection and nest features. The survey was conducted at margins of two permanent ponds in Southern Brazil. Habitat factors were evaluated in 18 plots with nest and 18 plots in the surrounding without nest (control), describing vegetation structure and heterogeneity, and substrate characteristics. Water temperature was measured inside the nest and in its adjacency. Nest features assessed were area, depth and temperature. Habitat characteristics differed between plots with and without nest. Microhabitat selected for nest-building was characterized by great vegetation cover and height, as well as shallower water and lower cover of organic matter in suspension than in plots without nest. Differences between temperature inside nest and in its adjacency were not observed. No relationship between nest features and habitat descriptors was evidenced. Results revealed that Hypsiboas faber does not build nests anywhere. Males seem to prefer more protected habitats, probably avoiding predation, invasion of conspecific males and inclement weather. Lack of differences between temperature inside- and outside-nest suggest that nest do not improve this condition for eggs and tadpole development. Nest architecture was not related to habitat characteristics, which may be determined by other factors, as nest checking by females before amplexus. Nest site selection should increase offspring survival as well the breeding success of Hypsiboas faber.
Resumo:
A study of the Adolpho Lutz Collection of Tabanidae at the Instituto Oswaldo Cruz and of additional Lutz material at the Instituto Butantan in São Paulo is reported. Of the ninety-four species of Tabanidae validly described by Lutz, type material of eighty-four was recognized, either holotypes, allotypes or syntypes. Lectotypes were selected from among syntype series or remaining specimens and all type material was labelled. Of the ten species of which no type material could be found, neotypes were designated in the case of two species, Erephosis nigricans and Erephosis pseudo-aurimaculata. Types of three species, Chrysops ecuadoriensis, Dichelacera salvadorensis and Esenbeckia nigricorpus are believed to have been in Hamburg and destroyed during the last war. Types of two species, Esenbeckia biscutellata and E. dubia, and additional type material of several others are believed to have been in Montevideo. A request for information about them remains unanswered. Types of the remaining three species, Dichelacera intermedia, Dichelacera laceriascia and Esenbeckia distinguenda could not be found, and it is believed that at least the type of the last species was accidentally destroyed. Three specific of subspecific names proposed by Lutz but palaced by others in synonymy have been revalidated, Acanthocera intermedia, Erephosis brevistria and Esenbeckia fenestrata. Generic placement of two names has been changed, Esenbeckia arcuata ricardoae to Proboscoides, and Selasoma giganteum to Stibasoma. Seven specific names proposed by Lutz appear to be synonyms of earlier names, as follows: Bombylopsis juxtaleonina Lutz and Castro, 1936 = B. leonina Lutz, 1909. Bombylopsis pseudoanalis Lutz, 1909 = B. erythronotata (Bigot, 1892). Esenbeckia fuscipennis var. flavescens Lutz, 1909 = Esenbeckia fuscipennis Wied., 1828. Fidena chrysopyga Lutz and Castro, 1936 = F. atra Lutz and Castro, 1936. Laphriomyia longipalpis Lutz and Castro, 1937 = L. mirabilis Lutz, 1911. Stibasoma semiflavum Lutz, 1915 = St. bicolor Bigot, 1892. Tabanus hesperus Lutz, 1912 = Chlorotabanus (Cryptolylus) innotescens (Walker, 1854). Four Lutz names appear to antedate names proposed by others, viz.: Diachlorus angustifrons Kröber, 1930 and D. ochraceus Kröb., 1928 not Macquart, 1850 = Diachlorus fuscistigma Lutz, 1913. Psalidia fairchildi Barretto, 1950 = dicladocera conspicua Lutz and Neiva, 1914. Fidena pseudo-fulvithorax Kröb., 1931 = Erephopsis flavicrinis Lutz, 1909. Esenbeckia lemniscata Enderlein, 1925 = Esenbeckia clari Lutz, 1909. Some comments on Lutz' system of classification are given together with notes on the genotypes and included species of his genera as revaled by his collection and notes.
Resumo:
Studies carried out in Sw outbred mice showed that there is no correlation between the degree of lung granulomatous reaction and the level of acquired resistance against S. mansoni infection induced by BCG.
Resumo:
From an initial double infection in mice, established by simultaneous and equivalent inocula of bloodstream forms of strains Y and F of Trypanosoma cruzi, two lines were derived by subinoculations: one (W) passaged every week, the other (M) every month. Through biological and biochemical methods only the Y strain was identified at the end of the 10th and 16th passages of line W and only the F strain at the 2nd and 4th passages of line M. The results illustrate strain selection through laboratory manipulation of initially mixed populations of T. cruzi.
Resumo:
Ivermectin (0.2 mg/kg body weight) caused a high mortality in nymphs and adults of Rhodnius prolixus following a single meal in mice sub-cutaneously injected with the drug. This effect was more evident in nymphs of 1st-and 2nd-instar than in older nymphs and adults. Third-instar nymphs presented a high mortality when fed on mice treated with ivermectin 24 and 48 hours previously, while mortality was significantly reduced in nymphs fed on mice treated 72 hours before. Surviving 3rd-instar nymphs did not molt. When adult females were fed once on mice treated for 24 hours with ivermectin there was a considerable reduction in egg production. This inhibition was not reversed by a second feeding on normal mice. We concluded that sub-lethal doses of ivermectin caused toxic effects interfering in the neuro-endocrine control of development and reproduction of this bloodsucking insect.
Resumo:
The behavioral response of Biomphalaria straminea to light was evaluted in terms of location of the snail in a Y-shaped aquarium in a situation of selection and of the rate (cm/hour) and direction of locomotion under homogeneous 9vertical) or differential (horizontal) lighting upon only one arm of the aquarium. The light source consisted of daylight fluorescent lamps with a spectrum close to that of natural light, with illumination varying from 28 to 350 lux. Analysis of the data showed that all animals, whether in groups or isolated, were attracted to light, although the time needed to approach the light source was 50% shorter for the former than for the latter. The rate of locomotion of B. straminea was 35% higher than observed in B. glabrata and 51% higher than that observed in B. tenagophila studied under similar conditions. The results are discussed in terms of social factors and geographical distribution of the three species.
Resumo:
Three antigens protective against Schistosoma mansoni have been extensively characterized. The schistosomulum surface antigen GP38 possesses an immunodominant carbohydrate epitope of which the structure has been defined. Protection can be achieved via the transfer of monoclonal antibodies recognizing the epitope or by immunization with anti-idiotype monoclonal antibodies. The glycan epitope is shared with the intermediate host, Biomphalaria glabrata as well as being present on other molluscs, including the Keyhole Limpet. A group of molecules at 28 kDa were initially characterized in adult worms and shown to protect rats and mice against a challenge infection. One of these molecules, P28-I, was cloned and expressed in E. coli, yeast and vaccinia virus. The recombinant antigen significantly protected rats, hamsters and baboons against a challenge infection. P28-I is a glutathione-S-transferase and the recombinant antigen produced in yeast exhibits the enzyme activity and has been purified to homogeneity by affinity chromatography. A second P28 antigen, P28-II, has also been cloned, fully sequenced and expressed. This recombinant antigen also protects against S. mansoni infection.
Resumo:
We have designed a vaccine model based on induction of cell-mediated immunity and shown that it protects mice against Schistosoma mansoni infection. Mice are immunized by intradermal injection with schistosome antigens plus BCG. Resistance is dependent on the route of antigen presentation and the adjuvant chosen. The pattern of resistance correlates with sensitization of T lymphocytes for production of gamma interferon, a macrophage activating lymphokine that stimulates the cellular effector mechanism of protection. Purified schistosome paramyosin, a muscle cell component present in soluble parasite antigenic preparations, is immunogenic for T lymphocytes and induces resistance when given intradermally with BCG. It is likely that this protein, and possibly other soluble molecules that are released by the parasites of a challenge infection, induce a cellular inflammatory response resulting in larval trapping and/or killing by activated macrophages. These results verify the feasibility of a vaccine against schistosomiasis based on induction of cell-mediated immune resistance mechanisms.
Resumo:
A preliminary study of the pharmacokinetic parameters of t-Butylaminoethyl disulfide was performed after administration of two different single doses (35 and 300 mg/kg) of either the cold or labelled drug. Plasma or blood samples were treated with dithiothreitol, perchloric acid, and, after filtration, submitted to further purification with anionic resein. In the final step, the drug was retained on a cationic resin column, eluted with NaCl 1M and detected according to the method of Ellman (1958). Alternatively, radioactive drug was detected by liquid scintillation counting. The results corresponding to the smaller dose of total drug suggested a pharmacokinetic behavior related to a one open compartment model with the following parameters: area under the intravenous curve (AUC i.v.):671 ± 14; AUC oral: 150 ± 40 µg.min. ml [raised to the power of -1]; elimination rate constant: 0.071 min [raised to the power of -1]; biological half life: 9.8 min; distribution volume: 0.74 ml/g. For the higher dose, the results seemed to obey a more complex undertermined model. Combining the results, the occurence of a dose-dependent pharmacokinetic behavior is suggested, the drug being rapidly absorbed and rapidly eliminated; the elimination process being related mainly to metabolization. The drug seems to be more toxic when administered I.V. because by this route it escapes first pass metabolism, while being quickly distributed to tissues. The maximum tolerated blood level seems to be around 16 µg/ml.