204 resultados para Seeder fertilizer
Resumo:
Alternative copper (Cu) sources could be used in fertilizer production, although the bioavailability of copper in these materials is unknown. The objective of this study was to evaluate the extractants neutral ammonium citrate (NAC), 2 % citric acid, 1 % acetic acid, 10 % HCl, 10 % H2SO4, buffer solution pH 6.0, DTPA, EDTA, water, and hot water in the quantification of available Cu content in several sources, relating them to the relative agronomic efficiency (RAE) of wheat grown in a clayey Latossolo Vermelho eutrófico (Oxisol) and Neossolo Quartzarênico (Typic Quartzipsamment). Copper was applied at the rate of 1.5 mg kg-1 as scrap slag, brass slag, Cu ore, granulated copper, and copper sulfate. The extractants 10 % HCl, 10 % H2SO4, and NAC extracted higher Cu concentrations. The RAE values of brass slag and Cu ore were similar to or higher than those of Cu sulfate and granulated Cu. Solubility in the 2nd NAC extractant, officially required for mineral fertilizers with Cu, was lower than 60 % for the scrap slag, Cu ore, and granulated copper sources. This fact indicates that adoption of the NAC extractant may be ineffective for industrial by-products, although no extractant was more efficient in predicting Cu availability for wheat fertilized with the Cu sources tested.
Resumo:
Infiltration is the passage of water through the soil surface, influenced by the soil type and cultivation and by the soil roughness, surface cover and water content. Infiltration absorbs most of the rainwater and is therefore crucial for planning mechanical conservation practices to manage runoff. This study determined water infiltration in two soil types under different types of management and cultivation, with simulated rainfall of varying intensity and duration applied at different times, and to adjust the empirical model of Horton to the infiltration data. The study was conducted in southern Brazil, on Dystric Nitisol (Nitossolo Bruno aluminoférrico húmico) and Humic Cambisol (Cambissolo Húmico alumínico léptico) soils to assess the following situations: simulated rains on the Nitisol from 2001 to 2012 in 31 treatments, differing in crop type, sowing direction, type of soil opener on the seeder, amount and type of crop residue and amount of liquid swine manure applied; on the Cambisol, rains were simlated from 2006 to 2012 and 18 treatments were evaluated, differing in crop, seeding direction and crop residue type. The constant of the water infiltration rate into the soil varies significantly with the soil type (30.2 mm h-1 in the Nitisol and 6.6 mm h-1 in the Cambisol), regardless of the management system, application time and rain intensity and duration. At the end of rainfalls, soil-water infiltration varies significantly with the management system, with the timing of application and rain intensity and duration, with values ranging from 13 to 59 mm h-1, in the two studied soils. The characteristics of the sowing operation in terms of relief, crop type and amount and type of crop residue influenced soil water infiltration: in the Nitisol, the values of contour and downhill seeding vary between 27 and 43 mm h-1, respectively, with crop residues of corn, wheat and soybean while in the Cambisol, the variation is between 2 and 36 mm h-1, respectively, in soybean and corn crops. The Horton model fits the values of water infiltration rate into the soil, resulting in the equation i = 30.2 + (68.2 - 30.2) e-0.0371t (R2 = 0.94**) for the Nitisol and i = 6.6 + (64.5 - 6.6) e-0.0537t (R2 = 0.99**) for the Cambisol.
Resumo:
The description of the fate of fertilizer-derived nitrogen (N) in agricultural systems is an essential tool to enhance management practices that maximize nutrient use by crops and minimize losses. Soil erosion causes loss of nutrients such as N, causing negative effects on surface and ground water quality, aside from losses in agricultural productivity by soil depletion. Studies correlating the percentage of fertilizer-derived N (FDN) with soil erosion rates and the factors involved in this process are scarce. The losses of soil and fertilizer-derived N by water erosion in soil under conventional tillage and no tillage under different rainfall intensities were quantified, identifying the intervening factors that increase loss. The experiment was carried out on plots (3.5 × 11 m) with two treatments and three replications, under simulated rainfall. The treatments consisted of soil with and soil without tillage. Three successive rainfalls were applied in intervals of 24 h, at intensities of 30 mm/h, 30 mm/h and 70 mm/h. The applied N fertilizer was isotopically labeled (15N) and incorporated into the soil in a line perpendicular to the plot length. Tillage absence resulted in higher soil losses and higher total nitrogen losses (TN) by erosion induced by the rainfalls. The FDN losses followed another pattern, since FDN contributions were highest from tilled plots, even when soil and TN losses were lowest, i.e., the smaller the amount of eroded sediment, the greater the percentage of FDN associated with these. Rain intensity did not affect the FDN loss, and losses were greatest after less intense rainfalls in both treatments.
Resumo:
ABSTRACT The large production of sewage sludge (SS), especially in large urban centers, has led to the suggestion of using this waste as fertilizer in agriculture. The economic viability of this action is great and contributes to improve the environment by cycling the nutrients present in this waste, including high contents of organic matter and plant nutrients. This study evaluated the chemical and biochemical properties of Dystrophic and EutroferricLatossolos Vermelhos (Oxisols) under corn and after SS application at different rates for 16 years. The field experiment was carried out in Jaboticabal, São Paulo State, Brazil, using a randomized block design with four treatments and five replications. Treatments consisted of control - T1 (mineral fertilization, without SS application), 5 Mg ha-1 SS - T2, 10 Mg ha-1 SS - T3, and 20 Mg ha-1 SS - T4 (dry weight base). The data were submitted to variance analysis and means were compared by the Duncan test at 5 %. Sewage sludge increased P extracted by resin in both theLatossolos Vermelhos, Dystrophic and Eutroferric, and the organic matter content in the Dystrophic Latossolo Vermelho. The waste at the rate 20 Mg ha-1 on a dry weight basis promoted increases in acid phosphatase activity in Eutroferric Latossolo Vermelho, basal respiration and metabolic quotient in DystrophicLatossolo Vermelho. The rate 20 Mg ha-1 sewage sludge on a dry weight basis did not alter the soil microbial biomass in both the Latossolos Vermelhos; in addition, it improved corn yields without inducing any symptoms of phytotoxicity or nutrient deficiency in the plants.
Resumo:
ABSTRACT The number of days between anthesis and maturation of conilon coffee berries varies according to the genotype. Thus, it is believed that periods of greater nutrient demand for fruit formation also vary according to the genotype, directly influencing fertilizer management. The goal of this study was to establish accumulation curves for the micronutrients boron, copper, iron, manganese, and zinc in conilon coffee trees with different maturation cycles. The experiment was conducted in Nova Venécia, State of Espírito Santo, Brazil, during the reproductive cycle of the 2010/2011 crop year. Four coffee genotypes with different maturation cycles (early, intermediate, late, and super-late) were studied. A completely randomized experimental design was used with five replications. The treatments correspond to the accumulation of B, Cu, Fe, Mn, and Zn in the berries every 28 days in the period from flowering to harvest. The early, intermediate, and late genotypes accumulated Fe, Cu, and Mn in a similar manner, with sigmoid curves, whereas the super-late genotype accumulated these nutrients exponentially. Zn was accumulated by all four genotypes following a sigmoid curve. The early, intermediate, and late genotypes accumulated B linearly, whereas the super-late genotype accumulated B following a sigmoid curve. The maturation cycle of the genotype must be taken into account to apply the correct rate of micronutrient fertilization in coffee plantations.
Resumo:
ABSTRACT Ectomycorrhizal fungi (EMF) may improve the adaptation of eucalypts saplings to field conditions and allow more efficient fertilizer use. The effectiveness of EMF inoculum application in promoting fungal colonization, plant growth, nutrient uptake, and the quality of rooted cuttings was evaluated forEucalyptus urophylla under commercial nursery conditions. For inoculated treatments, fertilization of the sapling substrate was reduced by 50 %. The experiment was carried out in a completely randomized design in a 4 × 4 factorial arrangement, wherein the factors were inoculum application rates of 0 (control), 5, 10, and 15 gel beads of calcium alginate containing the vegetative mycelium of Amanita muscaria, Elaphomyces antracinus, Pisolithus microcarpus, andScleroderma areolatum, plus a non-inoculated treatment without fertilization reduction in the substrate (commercial). Ectomycorrhizal fungi increased plant growth and fungal colonization as well as N and K uptake evenly. The best plant growth and fungal colonization were observed for the highest application rate. The greatest growth and fungal colonization and contents of P, N, and K were observed at the 10-bead rate. Plant inoculation with Amanita muscaria, Elaphomyces anthracinus, and Scleroderma areolatum increased P concentrations and contents in a differential manner. The Dickson Quality Index was not affected by the type of fungi or by inoculum application rates. Eucalypt rooted cuttings inoculated with ectomycorrhizal fungi and under half the amount of commercial fertilization had P, N, and K concentrations and contents greater than or equal to those of commercial plants and have high enough quality to be transplanted after 90 days.
Resumo:
ABSTRACT The literature on fertilization for carrot growing usually recommends nutrient application rates for yield expectations lower than the yields currently obtained. Moreover, the recommendation only considers the results of soil chemical analysis and does not include effects such as crop residues or variations in yield levels. The aim of this study was to propose a fertilizer recommendation system for carrot cultivation (FERTICALC Carrot) which includes consideration of the nutrient supply by crop residues, variation in intended yield, soil chemical properties, and the growing season (winter or summer). To obtain the data necessary for modeling nutritional requirements, 210 carrot production stands were sampled in the region of Alto Paranaíba, State of Minas Gerais, Brazil. The dry matter content of the roots, the coefficient of biological utilization of nutrients in the roots, and the nutrient harvest index for summer and winter crops were determined for these samples. To model the nutrient supply by the soil, the literature was surveyed in regard to this theme. A modeling system was developed for recommendation of macronutrients and B. For cationic micronutrients, the system only reports crop nutrient export and extraction. The FERTICALC which was developed proved to be efficient for fertilizer recommendation for carrot cultivation. Advantages in relation to official fertilizer recommendation tables are continuous variation of nutrient application rates in accordance with soil properties and in accordance with data regarding the extraction efficiency of modern, higher yielding cultivars.
Resumo:
ABSTRACT Nitrogen losses by ammonia (NH3) volatilization can be reduced by appropriate irrigation management or by alternative N sources, replacing urea. The objective of this study was to evaluate the efficiency of irrigation management and N source combinations in decreasing NH3 volatilization from an Argissolo Vermelho Distrófico típico cultivated for 28 years with black oat (Avena strigosa) and maize (Zea mays), under no-tillage in the region of Depressão Central, Rio Grande do Sul, Brazil. The experiment was arranged in a randomized block design with split plots with three replications, where the main plots consisted of irrigation systems: no irrigation; irrigation immediately before and irrigation immediately after fertilization. The subplots were treated with different N sources: urea, urea with urease inhibitor and slow-release fertilizer, at an N rate of 180 kg ha-1, broadcast over maize, plus a control treatment without N fertilization. Ammonia volatilization was assessed using semi-open static collectors for 1, 2, 4, 6, and 10 days after N fertilization. In general, more than 90 % of total NH3-N losses occurred until three days after N fertilization, with peaks up to 15.4 kg ha-1 d-1. The irrigation was efficient to reduce NH3 losses only when applied after N fertilization. However, reductions varied according to the N fertilizer, and were higher for urea (67 %) and slightly lower for urea with urease inhibitor (50 %) and slow-release fertilizer (40 %), compared with the mean of the treatments without irrigation and irrigation before fertilization. The use of urea with urease inhibitor instead of urea was only promising under volatilization-favorable conditions (no irrigation or irrigation before N fertilization). Compared to urea, slow-release fertilizer did not reduce ammonia volatilization in any of the rainfed or irrigated treatments.
Resumo:
ABSTRACT An alternative for recovery of areas degraded by coal mining is revegetation with rapidly growing leguminous trees, which often do not establish in low fertility soils. The objective of this study was to evaluate the efficiency of native rhizobia isolated from coal mining areas in the nodulation and growth of leguminous trees. We isolated 19 strains of rhizobia from a degraded soil near Criciúma, SC, Brazil, and evaluated the nodulation and growth-promoting capacity of the inoculated isolates for bracatinga (Mimosa scabrella), maricá (M. bimucronata) and angico-vermelho (Parapiptadenia rigida). Isolates UFSC-B2, B6, B8, B9, B11 and B16 were able to nodulate bracatinga, providing average increases of 165 % in shoot dry matter, with a significant contribution to N accumulation. Isolates UFSC-B5, B12, and M8 favored nodulation and growth of maricá, especially isolate UFSC-B12, which promoted increases of 370 % in N accumulation compared to treatment with N fertilizer. All strains were inefficient in promoting growth and N uptake by angico-vermelho. In conclusion, isolation and use of selected rhizobia for bracatinga and maricá plant inoculation can contribute to the growth and accumulation of N, with prospects for use in programs for revegetation of degraded soils in coal mining areas.
Resumo:
ABSTRACT Viticulture is an activity of great social and economic importance in the lower-middle region of the São Francisco River valley in northeastern Brazil. In this region, the fertility of soils under vineyards is generally poor. To assess the effects of organic and nitrogen fertilization on chemical properties and nitrate concentrations in an Argissolo Vermelho-Amarelo (Typic Plinthustalf), a field experiment was carried out in Petrolina, Pernambuco, on Syrah grapevines. Treatments consisted of two rates of organic fertilizer (0 and 30 m3 ha-1) and five N rates (0, 10, 20, 40, and 80 kg ha-1), in a randomized block design arranged in split plots, with five replications. The organic fertilizer levels represented the main plots and the N levels, the subplots. The source of N was urea and the source of organic fertilizer was goat manure. Irrigation was applied through a drip system and N by fertigation. At the end of the third growing season, soil chemical properties were determined and nitrate concentration in the soil solution (extracted by porous cups) was determined. Organic fertilization increased organic matter, pH, EC, P, K, Ca, Mg, Mn, sum of bases, base saturation, and CEC, but decreased exchangeable Cu concentration in the soil by complexation of Cu in the organic matter. Organic fertilization raised the nitrate concentration in the 0.20-0.40 m soil layer, making it leachable. Nitrate concentration in the soil increased as N rates increased, up to more than 300 mg kg-1 in soil and nearly 800 mg L-1 in the soil solution, becoming prone to leaching losses.
Resumo:
ABSTRACT Information on fertilizer management for cotton in narrow-row cropping system is scarce; therefore, studies are needed to improve nutrient stewardship for such systems. The aim of this study was to evaluate the effects of nitrogen and potassium application on yield and fiber quality of cotton under a narrow-row system. A field trial was carried out for three years, where the treatments were set up in an incomplete factorial arrangement [(4 × 4) + 1] under a randomized block design, with four N rates (20, 40, 60, and 80 kg ha-1), four K2O rates (0, 40, 80, and 120 kg ha-1), and one control (no N or K2O), for a total of 17 treatments, with four replicates. Urea and potassium chloride were applied on the soil surface 20 days after crop emergence. Varieties used were FMT 701 (2009/2010 and 2010/2011) and FMT 709 (2011/2012). Cotton yield and fiber quality parameters were measured. In the narrow-row cropping system, cotton lint yield was positively affected by N and K application. Cotton yield in relation to K applications was not dependent on N rates. Potassium application increased the micronaire index and fiber resistance, whereas high N rates reduced fiber resistance.
Resumo:
An experiment was conducted to determine the fruit size, mineral composition and quality of trickle-irrigated tomatoes as affected by potassium fertilizer rates. Six potassium (K) rates were applied as KCl, corresponding to 0, 48.4, 118.6, 188.8, 259.0 and 399.4 kg ha-1, with four replicates, following a randomized block design. Quadratic responses to K rates were observed for double extra large (diameter > 60 mm), extra large (56 to 60 mm) and large (52 to 56 mm) fruit yields. Maximum yields of these classes were achieved with K rates of 116, 190 and 233 kg ha-1, respectively. Fruit dry matter, phosphorus, sulfur and magnesium contents were not affected by K rates, but nitrate and K contents showed significant increments as K rates were increased. Vitamin C, total soluble solids, lycopene and beta-carotene contents in the fruits were not affected by K rates. Increments in the K rate lowered the fruit pH and increased total acids content.
Resumo:
A lysimeter experiment was carried out with sugarcane aiming to evaluate the leaching of nitrogen derived from either urea (15N) or the soil/sugarcane crop residues. The leaching of K+, Ca2+, and Mg2+ was also evaluated. The experiment was a factorial 2x4. The influencing factors were: firstly, the differential addition of two kinds of sugarcane remains to the soil, simulating conditions of cane- plantation renewal after the cane crop harvest, with and without previous straw removal by burning; secondly, four doses of N: 0, 30, 60, and 90 kg ha-1. During the experimental period the total volume of water received by the sugarcane-soil system was 2,015 mm, with 1,255 mm as precipitation and 760 mm as irrigation. The loss of N by leaching from the fertilizer (15N) was not detected. In the first three weeks the largest losses of N by leaching occurred, originating from the soil/sugarcane remains-N. The mean of leached N during the experimental period of 11 months was of 4.5 kg ha-1. The mean losses of K+, Ca2+, and Mg2+ were of 13, 320 and 80 kg ha-1, respectively.
Resumo:
Biosolids have been considered satisfactory to supply crops and plant nutrients. The ideal biosolids application rate should result in high crop yields and nutrient uptake, and leave low concentrations of nutrients in soils to avoid environmental problems. The objective of this study was to estimate the capacity of five biosolids to supply N and P to ryegrass (Lolium perenne) after a single application of either fertilizers or biosolids to a Spodosol and an Oxisol. Results showed that 6% - 36% of N and 3% - 7% of P applied as biosolids were recovered in plants grown on the Spodosol, while the range on the Oxisol was 26%-75% for N and 1.2%-3.7% for phosphorus. Biosolids' efficiency on supplying N and P to plants was similar to fertilizer on the Spodosol, but on the Oxisol it refrained to 65%-67% fertilizer's efficiency. After a single application of biosolids followed by six consecutive harvests, 25%-94% of the N and 93%-99% of the P were not used by plants and remain in the soils.
Resumo:
The objectives of this study were to evaluate nitrogen utilization by sugarcane ratoon from two sources, applied urea and sugarcane straw covering soil surface (trash blanket), besides the recovery of N from both sources in the soil-plant system. The following treatments were established in a randomized block design with four replicates: T1, vinasse-urea (100 kg ha-1 of urea-N) mixture applied on the total area of the soil covered with cane trash labeled with 15N; T2, vinasse-urea mixture (urea labeled with 15N; 100 kg ha-1 of urea-N) applied on the total area of the soil covered with non-labeled sugarcane trash; and T3, urea-15N (100 kg ha-1 of urea-N) applied in furrows at both sides of cane rows, with previous surface application of vinasse, onto soil without trash covering. The vinasse was applied at a rate of 100 m³ ha-1 in all treatments. The experiment was carried out on a Yellow Red Podzolic soil (Paleudalf), from October 1997 to August 1998, in Piracicaba, SP, Brazil. The nitrogen use efficiency of urea by the sugarcane ratoon was 21%, while that of the sugarcane straw was 9%. The main contributions of N from sugarcane trash, during one cycle, are the preservation and increase of the organic N in soil. The tendency for a lower accumulation of urea-N in the sugarcane plant, in the soil surface covered with sugarcane residue, was compensated by the assimilation of N from trash mineralization. Nitrogen derived from cane trash was more available to plants in the second half of the ratoon cycle