140 resultados para Resistance of last-resort antibiotics


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study describes the main characteristics of the proteolytic activities of the velvetbean caterpillar, Anticarsia gemmatalis Hübner, and their sensitivity to proteinase inhibitors and activators. Midguts of last instar larvae reared on an artificial diet were homogenized in 0.15 M NaCl and centrifuged at 14,000 g for 10 min at 4ºC and the supernatants were used in enzymatic assays at 30ºC, pH 10.0. Basal total proteolytic activity (azocasein hydrolysis) was 1.14 ± 0.15 absorbance variation min-1 mg protein-1, at 420 nm; basal trypsin-like activity (N-benzoyl-L-arginine-p-nitroanilide, BApNA, hydrolysis) was 0.217 ± 0.02 mmol p-nitroaniline min-1 mg protein-1. The maximum proteolytic activities were observed at pH 10.5 using azocasein and at pH 10.0 using BApNA, this pH being identical to the midgut pH of 10.0. The maximum trypsin-like activity occurred at 50ºC, a temperature that reduces enzyme stability to 80 and 60% of the original, when pre-incubated for 5 and 30 min, respectively. Phenylmethylsulfonyl fluoride inhibited the proteolytic activities with an IC50 of 0.39 mM for azocasein hydrolysis and of 1.35 mM for BApNA hydrolysis. Benzamidine inhibited the hydrolysis with an IC50 of 0.69 and 0.076 mM for azocasein and BApNA, respectively. The absence of cysteine-proteinases is indicated by the fact that 2-mercaptoethanol and L-cysteine did not increase the rate of azocasein hydrolysis. These results demonstrate the presence of serine-proteinases and the predominance of trypsin-like activity in the midgut of Lepidoptera insects, now also detected in A. gemmatalis, and suggest this enzyme as a major target for pest control based on disruption of protein metabolism using proteinase inhibitors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ventilator-associated pneumonia (VAP) remains one of the major causes of infection in the intensive care unit (ICU) and is associated with the length of hospital stay, duration of mechanical ventilation, and use of broad-spectrum antibiotics. We compared the frequency of VAP 10 months prior to (pre-intervention group) and 13 months after (post-intervention group) initiation of the use of a heat and moisture exchanger (HME) filter. This is a study with prospective before-and-after design performed in the ICU in a tertiary university hospital. Three hundred and fourteen patients were admitted to the ICU under mechanical ventilation, 168 of whom were included in group HH (heated humidifier) and 146 in group HME. The frequency of VAP per 1000 ventilator-days was similar for both the HH and HME groups (18.7 vs 17.4, respectively; P = 0.97). Duration of mechanical ventilation (11 vs 12 days, respectively; P = 0.48) and length of ICU stay (11 vs 12 days, respectively; P = 0.39) did not differ between the HH and HME groups. The chance of developing VAP was higher in patients with a longer ICU stay and longer duration of mechanical ventilation. This finding was similar when adjusted for the use of HME. The use of HME in intensive care did not reduce the incidence of VAP, the duration of mechanical ventilation, or the length of stay in the ICU in the study population.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Magnesium and its alloys have recently been used in the development of lightweight, biodegradable implant materials. However, the corrosion properties of magnesium limit its clinical application. The purpose of this study was to comprehensively evaluate the degradation behavior and biomechanical properties of magnesium materials treated with micro-arc oxidation (MAO), which is a new promising surface treatment for developing corrosion resistance in magnesium, and to provide a theoretical basis for its further optimization and clinical application. The degradation behavior of MAO-treated magnesium was studied systematically by immersion and electrochemical tests, and its biomechanical performance when exposed to simulated body fluids was evaluated by tensile tests. In addition, the cell toxicity of MAO-treated magnesium samples during the corrosion process was evaluated, and its biocompatibility was investigated under in vivo conditions. The results of this study showed that the oxide coating layers could elevate the corrosion potential of magnesium and reduce its degradation rate. In addition, the MAO-coated sample showed no cytotoxicity and more new bone was formed around it during in vivo degradation. MAO treatment could effectively enhance the corrosion resistance of the magnesium specimen and help to keep its original mechanical properties. The MAO-coated magnesium material had good cytocompatibility and biocompatibility. This technique has an advantage for developing novel implant materials and may potentially be used for future clinical applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Enzymatic hydrolysis of granular starch is an important tool to provide information about granule structure. Cassava, sweet potato, Peruvian carrot, and potato starches were hydrolyzed by bacterial α-amylase at 37 °C for 48 hours, and the physicochemical properties of the residues from hydrolysis were determined. Cassava starch was the most susceptible to enzyme displaying 20.9% of hydrolysis, whereas potato starch was the most resistant with 5.9%. The granule average size varied from 10.8 to 23.4 μm for Peruvian carrot and potato starches, respectively. With the use of SEM, a smooth granule surface was observed for all native starches. Cassava and sweet potato starches displayed an A-type X-ray diffraction pattern, while Peruvian carrot and potato starches showed a B-type pattern. After hydrolysis, cassava, sweet potato, and Peruvian carrot starches showed some well degraded granules, whereas potato starch presented a slight sign of degradation. The amylose content of the starches decreased with hydrolysis for cassava, sweet potato, and Peruvian carrot starches and was kept unchanged for the potato starch. As expected, intrinsic viscosity and pasting properties decreased for all hydrolyzed starches. There is no difference between thermal properties of native and hydrolyzed starches. These results suggested that hydrolysis occurred in amorphous and crystalline areas of the granules. The B type diffraction pattern in conjunction with the big granule size of the potato starch may have contributed to the greatest resistance of this starch to hydrolysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, through the use of thermal analysis techniques, the thermal stabilities of some antioxidants were investigated, in order to evaluate their resistance to thermal oxidation in oils, by heating canola vegetable oil, and to suggest that antioxidants would be more appropriate to increase the resistance of vegetable oils in the thermal degradation process in frying. The techniques used were: Thermal Gravimetric (TG) and Differential Scanning Calorimetry (DSC) analyses, as well as an allusion to a possible protective action of the vegetable oils, based on the thermal oxidation of canola vegetable oil in the laboratory under constant heating at 180 ºC/8 hours for 10 days. The studied antioxidants were: ascorbic acid, sorbic acid, citric acid, sodium erythorbate, BHT (3,5-di-tert-butyl-4-hydroxytoluene), BHA (2, 3-tert-butyl-4-methoxyphenol), TBHQ (tertiary butyl hydroquinone), PG (propyl gallate) - described as antioxidants by ANVISA and the FDA; and also the phytic acid antioxidant and the SAIB (sucrose acetate isobutyrate) additive, which is used in the food industry, in order to test its behavior as an antioxidant in vegetable oil. The following antioxidants: citric acid, sodium erythorbate, BHA, BHT, TBHQ and sorbic acid decompose at temperatures below 180 ºC, and therefore, have little protective action in vegetable oils undergoing frying processes. The antioxidants below: phytic acid, ascorbic acid and PG, are the most resistant and begin their decomposition processes at temperatures between 180 and 200 ºC. The thermal analytical techniques have also shown that the SAIB antioxidant is the most resistant to oxidative action, and it can be a useful choice in the thermal decomposition prevention of edible oils, improving stability regarding oxidative processes.