158 resultados para Repetitive-element-based PCR assays
Resumo:
This paper reports on the development and validation of a loop-mediated isothermal amplification assay (LAMP) for the rapid and specific detection of Actinobacillus pleuropneumoniae (A. pleuropneumoniae). A set of six primers were designed derived from the dsbE-like gene of A.pleuropneumoniae and validate the assay using 9 A. pleuropneumoniae reference/field strains, 132 clinical isolates and 9 other pathogens. The results indicated that positive reactions were confirmed for all A. pleuropneumoniae strains and specimens by LAMP at 63ºC for 60 min and no cross-reactivity were observed from other non-A.pleuropneumoniae including Haemophilus parasuis, Escherichia coli, Pasteurella multocida, Bordetella bronchiseptica, Streptococcus suis, Salmonella enterica, Staphylococcus, porcine reproductive and respiratory syndrome virus (PRRSV), and Pseudorabies virus. The detection limit of the conventional PCR was 10² CFU per PCR test tube, while that of the LAMP was 5 copies per tube. Therefore, the sensitivity of LAMP was higher than that of PCR. Moreover, the LAMP assay provided a rapid yet simple test of A. pleuropneumoniae suitable for laboratory diagnosis and pen-side detection due to ease of operation and the requirement of only a regular water bath or heat block for the reaction.
Resumo:
The current systems of breeding poultry, based on high population density, increase the risk of spreading pathogens, especially those causing respiratory diseases and those that have more than one host. Fowl Cholera (FC) is one such pathogen, and even though it represents one of several avian diseases that should be considered in the differential diagnosis of notifiable diseases that present with sudden death, the pathogenesis and virulence factors involved in FC are still poorly understood. The objective of this study was to investigate twelve genes related to virulence in 25 samples of Pasteurella multocida isolated from FC cases in the southern region of Brazil through the development of multiplex PCR protocols. The protocols developed were capable of detecting all of the proposed genes. The ompH, oma87, sodC, hgbA, hgbB, exBD-tonB and nanB genes were present in 100% of the samples (25/25), the sodA and nanH genes were present in 96% (24/25), ptfA was present in 92% (23/25), and pfhA was present in 60% (15/25). Gene toxA was not identified in any of the samples studied (0/25). Five different genetic profiles were obtained, of which P1 (negative to toxA) was the most common. We concluded that the multiplex-PCR protocols could be useful tools for rapid and simultaneous detection of virulence genes. Despite the high frequency of the analyzed genes and the fact that all samples belonged to the same subspecies of P. multocida, five genetic profiles were observed, which should be confirmed in a study with a larger number of samples.
Resumo:
Salmonella spp. are considered the main agents of foodborne disease and Salmonella Enteritidis is one of the most frequently isolated serovars worldwide. The virulence of Salmonella spp. and their interaction with the host are complex processes involving virulence factors to overcome host defenses. The purpose of this study was to detect virulence genes in S. Enteritidis isolates from poultry in the South of Brazil. PCR-based assays were developed in order to detect nine genes (lpfA, agfA, sefA, invA, hilA, avrA, sopE, sivH and spvC) associated with the virulence in eighty-four isolates of S. Enteritidis isolated from poultry. The invA, hilA, sivH, sefA and avrA genes were present in 100% of the isolates; lpfA and sopE were present in 99%; agfA was present in 96%; and the spvC gene was present in 92%. It was possible to characterize the isolates with four different genetic profiles (P1, P2, P3 and P4), as it follows: P1, positive for all genes; P2, negative only for spvC; P3, negative for agfA; and P4, negative for lpfA, spvC and sopE. The most prevalent profile was P1, which was present in 88% of the isolates. Although all isolates belong to the same serovar, it was possible to observe variations in the presence of these virulence-associated genes between different isolates. The characterization of the mechanisms of virulence circulating in the population of Salmonella Enteritidis is important for a better understanding of its biology and pathogenicity. The frequency of these genes and the establishment of genetic profiles can be used to determine patterns of virulence. These patterns, associated with in vivo studies, may help develop tools to predict the ability of virulence of different strains.
Resumo:
The demand for more efficient manufacturing processes has been increasing in the last few years. The cold forging process is presented as a possible solution, because it allows the production of parts with a good surface finish and with good mechanical properties. Nevertheless, the cold forming sequence design is very empirical and it is based on the designer experience. The computational modeling of each forming process stage by the finite element method can make the sequence design faster and more efficient, decreasing the use of conventional "trial and error" methods. In this study, the application of a commercial general finite element software - ANSYS - has been applied to model a forming operation. Models have been developed to simulate the ring compression test and to simulate a basic forming operation (upsetting) that is applied in most of the cold forging parts sequences. The simulated upsetting operation is one stage of the automotive starter parts manufacturing process. Experiments have been done to obtain the stress-strain material curve, the material flow during the simulated stage, and the required forming force. These experiments provided results used as numerical model input data and as validation of model results. The comparison between experiments and numerical results confirms the developed methodology potential on die filling prediction.
Resumo:
This paper presents an HP-Adaptive Procedure with Hierarchical formulation for the Boundary Element Method in 2-D Elasticity problems. Firstly, H, P and HP formulations are defined. Then, the hierarchical concept, which allows a substantial reduction in the dimension of equation system, is introduced. The error estimator used is based on the residual computation over each node inside an element. Finally, the HP strategy is defined and applied to two examples.
Resumo:
We have developed a polymerase chain reaction (PCR) assay which distinguishes genotype F from the other genotypes of hepatitis B virus (HBV). The method was used to characterize HBV strains isolated in urban areas of the Brazilian Amazon. DNA was amplified in 54 of a total of 78 HBsAg-positive serum samples, using universal, non-genotype-specific primers. Only 4 (7.4%) were identified as genotype F by our genotype-specific PCR assay. This proportion is notably lower than that previously reported in Argentina, Venezuela, Peru, and Central America.
Resumo:
The use of limiting dilution assay (LDA) for assessing the frequency of responders in a cell population is a method extensively used by immunologists. A series of studies addressing the statistical method of choice in an LDA have been published. However, none of these studies has addressed the point of how many wells should be employed in a given assay. The objective of this study was to demonstrate how a researcher can predict the number of wells that should be employed in order to obtain results with a given accuracy, and, therefore, to help in choosing a better experimental design to fulfill one's expectations. We present the rationale underlying the expected relative error computation based on simple binomial distributions. A series of simulated in machina experiments were performed to test the validity of the a priori computation of expected errors, thus confirming the predictions. The step-by-step procedure of the relative error estimation is given. We also discuss the constraints under which an LDA must be performed.
Resumo:
It has been demonstrated that the alpha2 chain of laminin-2 present on the surface of Schwann cells is involved in the process of attachment of Mycobacterium leprae to these cells. Searching for M. leprae laminin-binding molecules, in a previous study we isolated and characterized the cationic proteins histone-like protein (Hlp) and ribosomal proteins S4 and S5 as potential adhesins involved in M. leprae-Schwann cell interaction. Hlp was shown to bind alpha2-laminins and to greatly enhance the attachment of mycobacteria to ST88-14 Schwann cells. In the present study, we investigated the laminin-binding capacity of the ribosomal proteins S4 and S5. The genes coding for these proteins were PCR amplified and their recombinant products were shown to bind alpha2-laminins in overlay assays. However, when tested in ELISA-based assays and in adhesion assays with ST88-14 cells, in contrast to Hlp, S4 and S5 failed to bind laminin and act as adhesins. The laminin-binding property and adhesin capacity of two basic host-derived proteins were also tested, and only histones, but not cytochrome c, were able to increase bacterial attachment to ST88-14 cells. Our data suggest that the alanine/lysine-rich sequences shared by Hlp and eukaryotic H1 histones might be involved in the binding of these cationic proteins to laminin.
Resumo:
In the present study we used a simple and reliable method for HLA-DQA1 allele typing based on the single-stranded conformation polymorphism (SSCP) properties of DNA molecules obtained by PCR. The technique consists of PCR amplification of a DNA fragment comprising the second exon of the HLA-DQA1 gene, amplicon denaturation using a low ionic strength solution (LIS), and electrophoresis on a small native polyacrylamide gel, followed by a rapid silver staining procedure. In order to validate the technique and to obtain the allele patterns for the DQA1 gene, 50 cervical samples were typed using this methodology and the commercial Amplitype® HLA DQA1 Amplification and Typing kit. All the alleles detected with the kit were characterized by the LIS-SSCP approach. This procedure proved to be useful for population screening and typing of the DQA1 gene as well as for detecting new alleles or mutations in the donor-recipient molecular matching of HLA class II genes.
Resumo:
Chronic granulomatous disease (CGD) is an inherited disorder of the innate immune system characterized by a defective oxidative burst of phagocytes and subsequent impairment of their microbicidal activity. Mutations in one of the NADPH-oxidase components affect gene expression or function of this system, leading to the phenotype of CGD. Defects in gp91-phox lead to X-linked CGD, responsible for approximately 70% of CGD cases. Investigation of the highly heterogeneous genotype of CGD patients includes mutation analysis, Northern blot or Western blot assays according to the particular case. The aim of the present study was to use reverse transcription (RT)-PCR for the analysis of molecular defects responsible for X-linked CGD in eight Brazilian patients and to assess its potential for broader application to molecular screening in CGD. Total RNA was prepared from Epstein B virus-transformed B-lymphocytes and reverse transcribed using random hexamers. The resulting cDNA was PCR-amplified by specific and overlapping pairs of primers designed to amplify three regions of the gp91-phox gene: exons 1-5, 3-9, and 7-13. This strategy detected defective gp91-phox expression in seven patients. The RT-PCR results matched clinical history, biochemical data (nitroblue tetrazolium or superoxide release assay) and available mutation analysis in four cases. In three additional cases, RT-PCR results matched clinical history and biochemical data. In another case, RT-PCR was normal despite a clinical history compatible with CGD and defective respiratory burst. We conclude that this new application of RT-PCR analysis - a simple, economical and rapid method - was appropriate for screening molecular defects in 7 of 8 X-linked CGD patients.
Resumo:
Three recombinant antigens of Treponema pallidum Nichols strain were fused with GST, cloned and expressed in Escherichia coli, resulting in high levels of GST-rTp47 and GST-rTp17 expression, and supplementation with arginine tRNA for the AGR codon was needed to obtain GST-rTp15 overexpression. Purified fusion protein yields were 1.9, 1.7 and 5.3 mg/l of cell culture for GST-rTp47, GST-rTp17 and GST-rTp15, respectively. The identities of the antigens obtained were confirmed by automated DNA sequencing using ABI Prism 310 and peptide mapping by Finningan LC/MS. These recombinant antigens were evaluated by immuno-slot blot techniques applied to 137 serum samples from patients with a clinical and laboratory diagnosis of syphilis (61 samples), from healthy blood donors (50 samples), individuals with sexually transmitted disease other than syphilis (3 samples), and from individuals with other spirochetal diseases such as Lyme disease (20 samples) and leptospirosis (3 samples). The assay had sensitivity of 95.1% (95% CI, 86.1 to 98.7%) and a specificity of 94.7% (95% CI, 87.0 to 98.7%); a stronger reactivity was observed with fraction rTp17. The immunoreactivity results showed that fusion recombinant antigens based-immuno-slot blot techniques are suitable for use in diagnostic assays for syphilis.
Resumo:
Fabry disease is an X-linked lysosomal disorder due to a-galactosidase A deficiency that causes storage of globotriaosylceramide. The gene coding for this lysosomal enzyme is located on the long arm of the X chromosome, in region Xq21.33-Xq22. Disease progression leads to vascular disease secondary to involvement of kidney, heart and the central nervous system. Detection of female carriers based solely on enzyme assays is often inconclusive. Therefore, mutation analysis is a valuable tool for diagnosis and genetic counseling. Many mutations of the a-galactosidase A gene have been reported with high genetic heterogeneity, being most mutations private found in only one family. The disease is panethnic, and estimates of incidence range from about 1 in 40,000 to 60,000 males. Our objective was to describe the analysis of 6 male and 7 female individuals belonging to 4 different Fabry disease families by automated sequencing of the seven exons of the a-galactosidase gene. Sequencing was performed using PCR fragments for each exon amplified from DNA extracted from peripheral blood. Three known mutations and one previously described in another Brazilian family were detected. Of 7 female relatives studied, 4 were carriers. Although the present study confirms the heterogeneity of mutations in Fabry disease, the finding of the same mutation previously detected in another Fabry family from our region raises the possibility of some founder effect, or genetic drift. Finally, the present study highlights the importance of molecular analysis for carrier detection and genetic counseling.
Resumo:
Whole blood samples (N = 295) were obtained from different locations in Amazonas and Sucre States, in Venezuela. Malaria was diagnosed by microscopy, OptiMAL™ and polymerase chain reaction (PCR), with Plasmodium vivax, P. falciparum, and P. malariae being detected when possible. We identified 93 infections, 66 of which were caused by P. vivax, 26 by P. falciparum, and 1 was a mixed infection. No infection caused by P. malariae was detected. The sensitivity and specificity of each diagnostic method were high: 95.7 and 97.9% for microscopy, 87.0 and 97.9% for OptiMAL, and 98.0 and 100% for PCR, respectively. Most samples (72.2%) showed more than 5000 parasites/µL blood. The sensitivity of the diagnosis by microscopy and OptiMAL decreased with lower parasitemia. All samples showing disagreement among the methods were reevaluated, but the first result was used for the calculations. Parasites were detected in the 6 false-negative samples by microscopy after the second examination. The mixed infection was only detected by PCR, while the other methods diagnosed it as P. falciparum (microscopy) or P. vivax (OptiMAL) infection. Most of the false results obtained with the OptiMAL strip were related to the P. falciparum-specific band, including 3 species misdiagnoses, which could be related to the test itself or to genetic variation of the Venezuelan strains. The use of the microscopic method for malaria detection is recommended for its low cost but is very difficult to implement in large scale, population-based studies; thus, we report here more efficient methods suitable for this purpose.
Resumo:
Amplification of the MYCN gene in neuroblastomas is a potent biological marker of highly aggressive tumors, which are invariably fatal unless sound clinical management is applied. To determine the usefulness of semi-quantitative differential PCR (SQ-PCR) for accurate quantification of MYCN gene copy number, we evaluated the analytical performance of this method by comparing the results obtained with it for 101 tumor samples of neuroblastoma to that obtained by absolute and relative real-time PCR. Similar results were obtained for 100 (99%) samples, no significant difference was detected between the median log10 MYCN copy number (1.53 by SQ-PCR versus 1.55 by absolute real-time PCR), and the results of the two assays correlated closely (r = 0.8, Pearson correlation; P < 0.001). In the comparison of SQ-PCR and relative real-time PCR, SQ-PCR versus relative real-time PCR concordant results were found in 100 (99%) samples, no significant difference was found in median log10 MYCN copy number (1.53 by SQ-PCR versus 1.27 by relative real-time PCR), and the results of the two assays correlated closely (r = 0.8, Pearson correlation; P < 0.001). These findings indicate that the performance of SQ-PCR was comparable to that of real-time PCR for the amplification and quantification of MYCN copy number. Thus, SQ-PCR can be reliably used as an alternative assay in laboratories without facilities for real-time PCR.
Resumo:
The main objective of the present study was to find suitable DNA-targeting sequences (DTS) for the construction of plasmid vectors to be used to treat ischemic diseases. The well-known Simian virus 40 nuclear DTS (SV40-DTS) and hypoxia-responsive element (HRE) sequences were used to construct plasmid vectors to express the human vascular endothelial growth factor gene (hVEGF). The rate of plasmid nuclear transport and consequent gene expression under normoxia (20% O2) and hypoxia (less than 5% O2) were determined. Plasmids containing the SV40-DTS or HRE sequences were constructed and used to transfect the A293T cell line (a human embryonic kidney cell line) in vitro and mouse skeletal muscle cells in vivo. Plasmid transport to the nucleus was monitored by real-time PCR, and the expression level of the hVEGF gene was measured by ELISA. The in vitro nuclear transport efficiency of the SV40-DTS plasmid was about 50% lower under hypoxia, while the HRE plasmid was about 50% higher under hypoxia. Quantitation of reporter gene expression in vitro and in vivo, under hypoxia and normoxia, confirmed that the SV40-DTS plasmid functioned better under normoxia, while the HRE plasmid was superior under hypoxia. These results indicate that the efficiency of gene expression by plasmids containing DNA binding sequences is affected by the concentration of oxygen in the medium.