176 resultados para Nitrogen pollution
Resumo:
Advanced industrialized nations have experienced severe pollution problems over the past forty years, caused mainly by carbon monoxide, hydrocarbons and nitrogen oxide emissions from automobiles. Catalyst technology has played a major part in minimizing these emissions as required by even more restrictive laws. The catalyst has been optimized over the years to meet the requirements of high activity and long life. The oxidation of hydrocarbon and carbon monoxide are in advanced development stage while that of NOx catalysts is far less advanced. In the future, catalyst technology is expected to contribute to overcome the challenges to get a cleaner air.
Resumo:
The aim of this work was to study the removal of CO2 and NO by microalgae and to evaluate the kinetic characteristics of the cultures. Spirulina sp. showed µmax and Xmax (0.11 d-1, 1.11 g L-1 d-1) when treated with CO2 and NaNO3. The maximum CO2 removal was 22.97% for S. obliquus treated with KNO3 and atmospheric CO2. The S. obliquus showed maximum NO removal (21.30%) when treated with NO and CO2. Coupling the cultivation of these microalgae with the removal of CO2 and NO has the potential not only to reduce the costs of culture media but also to offset carbon and nitrogen emissions.
Resumo:
Foliar analysis of biochemical parameters were carried out in order to investigate the influence of air pollutants on two tropical tree species (Licania tomentosa (Benth.) and Bauhinia forfícata (Link.)). Special attention was given to tropospheric ozone due to the fact that concentration levels in the region were found to be up to 140 µg m-3 for a 4 h average time, which is well above the value that can cause injuries to orchides and tobacco (59 µg m-3). Other pollutants such as nitrogen and sulphur oxides were measured and their ambient concentrations were also associated to biochemical alterations in the investigated species.
Resumo:
Sediment samples from the Barigui River in Curitiba, south of Brazil, were evaluated following granulometric composition, organic carbon content, nitrogen, phosphorus and metals such as zinc, lead, chrome, nickel and cadmium. The sediments shown high percentage of phosphorus and nitrogen. Also the elemental organic C:N:P exceed the Redfield ratios possible because the large amount of sewage input into river. The presence of metals is also high, however the metal cadmium has not been found. But the other metals are in greater concentrations and possibly the presence of these metals is given by industrial and domestic sewage.
Resumo:
Daily records of hospital admissions due to cardiorespiratory diseases and levels of PM10, SO2, CO, NO, NO2, and O3 were collected from 1999-2004 to evaluate the relationship between air pollution and morbidity in Lisbon. Generalised additive Poisson regression models were adopted, controlling for temperature, humidity, and both short and long-term seasonality. Significant positive associations, lagged by 1 or 2 days, were found between markers of traffic-related pollution (CO and NO2) and cardiocirculatory diseases in all age groups. Increased childhood emergency admissions for respiratory illness were significantly correlated with the 1-day lagged SO2 levels coming from industrial activities.
Resumo:
Density functional theory (DFT) calculations at the B3LYP/6-31G** theoretical level were performed for a series of guanidine-fused bicyclic skeleton derivatives C4N6H8-n(NO2)n (n = 1 - 6). The heats of formation (HOFs) were calculated by isodesmic reactions, and the detonation properties were evaluated using the Kamlet - Jacobs equations. The bond dissociation energies were also analyzed to investigate the thermal stability and sensitivity of the compounds. The results show that all of the derivatives have high positive HOFs, compound G has the highest theoretical density, and compound F1 has the highest detonation velocity and detonation pressure. Considering both the detonation properties and thermal stabilities, compounds D1 and D4 (3 nitro substituents), E1 - E6 (4 nitro substituents), and G (6 nitro substituents) can be regarded as potential candidates for high-energy density materials.
Resumo:
Two soybean (Glycine max) cultivars were used in this study, Ocepar 4, rated as moderately resistant to Meloidogyne incognita race 3 but susceptible to M. javanica, and 'BR 16', susceptible to both nematodes. The effect of nematodes infection on the uptake and transport of N, P and Ca to the shoot was studied in plants growing in a split root system. The upper half was inoculated with 0, 3,000, 9,000 or 27,000 eggs/plant while the lower half received 15N, 32P or 45Ca. Infected plants showed an increase of root but a decrease of shoot mass with increasing inoculum levels. In general, total endogenous nutrients increased in the roots and tended to decrease in the shoots with increasing inoculum levels. When concentrations were calculated, there was an increase in the three nutrients in the roots, and an increase of Ca but no significant variation of N and P was observed in the shoots. The total amount of 15N in the roots increased at the highest inoculum levels but 32P and 45Ca decreased. In the shoots there was a reduction of 32P and 45Ca. The specific concentrations of the labelled nutrients (abundance or radioactivity/tissue mass) also showed a decrease of 32P and 45Ca in the shoots and roots of infected plants and an increase of 15N in the shoots. Considering that overall nutrient concentrations reflect cumulative nutrient uptake and the data from labelled elements gave information at a specific moment of the infection, thus nematodes do interfere with nutrient uptake and translocation.
Resumo:
Mülliken charges on nitrogen atoms were calculated for several arylamines, utilizing the AM1 Quantum Chemistry method, relating their values to experimental amine pKa . Direct relation between pKa and nitrogen charges was found. The amines energies of protonation, calculated by the same method, also correlate directly with these charges.
Resumo:
Resistance induction through the use of chemical inducers often results in physiological costs to the plant. In this study, induced resistance in cotton plants was evaluated with regard to physiological costs in a cultivar susceptible to Colletotrichum gossypii var. cephalosporioides (CNPA GO 2002 - 7997). Plants were cultivated in substrates with two levels of nitrogen and received two applications of acibenzolar-S-methyl (ASM), jasmonic acid (JA) and Agro-Mos® (AM) disease resistance inducers. Plant height (H), internodal length (IL), shoot fresh weight (SFW), root fresh weight (RFW), shoot dry weight (SDW) and root dry weight (RDW) were evaluated. The activity of the phenylalanine ammonia lyase (PAL) and peroxidase (POX) was also determined. The plants treated with ASM presented high physiological costs with an accentuated reduction in H, SFW and SDW, whereas those treated with JA exhibited a significant increase in SDW, and did not significantly differ from H and IL. In the potting mix supplemented with nitrogen, all inducers differed from the control treatment regarding to internodal length, whereas only ASM and AM presented a significant difference between one another in the potting mix without the addition of nitrogen. Significant correlations (P=0.05) were found for most of the variables analyzed, with greater correlations observed between SFW and SDW (0.94); IL and H (0.74); SFW and H (0.70); and SDW and H (0.70). ASM induced the least amount of PAL activity, significantly differing from the remaining treatments. Greater POX activity was observed in ASM, which significantly differed from the control. AM and JA, however, presented lower activity than the control with regard to these enzymes, and it was not possible to confirm induction resistance in these two treatments.
Resumo:
A comparative study of elements deposited on tree bark was carried out for urban and periurban areas of two of the most important cities in Argentina. The content of Fe, Mg, Al, Mn, Zn, Pb, Ba, Cr, Hg, Cu, Ni, Cd and Sb was determined by inductively coupled plasma atomic emission spectrometry (ICP-OES) in Morus alba tree bark collected in the cities of Buenos Aires and Mendoza. The main air pollutants detected in the Buenos Aires urban area were Ba, Cr, Cu and Ni and indicate significative difference from the Mendoza urban and periurban areas. Significantly, higher concentrations of Zn, Ba, Cr and Cu were recorded in the periurban area of the city of Buenos Aires than in Mendoza. Bark samples were strongly influenced by dust and show Al, Fe, Mg and other element accumulations that indicate that soil particles were carried out by wind. Elements like Ba and Zn, commonly linked to traffic emissions, showed the highest concentrations in the Buenos Aires metropolitan area, possibly due to more intensive vehicular traffic. Our results indicated that intensity of vehicular traffic and not city structure is responsible for air pollution.
Resumo:
The objective of this study was to evaluate the effects of the application of different water depths and nitrogen and potassium doses in the quality of Tanzania grass, in the southern of the state of Tocantins. The experiment was conducted on strips of traditional sprinklers, and used, as treatments, a mixture of fertilizer combinations of N and K2O always in the ratio of 1 N:0.8 K2O. This study determined throughout the experiment: plant height (PH), the crude protein (CP) and neutral detergent fiber (NDF). The highest plant height obtained was 132.4 cm, with a fertilizer dose of 691.71 kg ha-1 in the proportion of N:0.8 K2O, in other words, 384.28 kg ha-1 of N and 307.43 kg ha-1 of K2O, and water depth of 80% of the ETc. The highest crude protein content was 12.2%, with the fertilizer dose application of 700 kg ha-1 yr-1 in the proportion of 1 N to 0.8 of K2O, in other words, 388.89 kg ha-1 of N and 311.11 kg ha-1 of K2O and absence of irrigation. The lowest level of neutral detergent fiber was 60.7% with the application of the smallest dose of fertilizer and highest water depth. It was concluded in this study that there was an increase in plant height by increasing the fertilizer dose and water depth. The crude protein content increased 5.4% in the dry season, by increasing the fertilizer dose and water depth. In the dry season, there was an increase of NDF content by 4.5% by increasing the application of fertilizer and water depth.
Resumo:
The objective of this study was to evaluate the effects of the nitrogen fertilization in the form of swine deep bed in the properties of a quartz-sand neosol. The organic compound used was the deep bed made with rice hulls, from a commercial swine finishing system farm. Deep bed samples have been collected at various points in the installation in order to obtain a representative composite sample which has been fractionated in a 2.0 mm sieve and submitted to a 50-day maturation period. Then, agronomic value analyses were done. The experimental design was completely randomized. The treatments consisted of 0; 75; 150 and 300 mg dm-3 of N doses of deep bed as well as an additional treatment with ammonium sulfate at a 150 mg dm-3 of N. The experimental period in the greenhouse was 45 days, where the soil was cultivated with maize. After the experiment completion, further soil properties analyses were done. From the results, it was noted that the organic fertilization with deep bed provided a significant increase in the levels of potassium, in the sum of the bases, in the effective CEC, in the CEC at pH 7.0 and in the percentage of saturation.
Resumo:
The aim of this study was to evaluate the possible impacts caused in the soil and in the percolate in lysimeters of drainage with application of different rates of swine wastewater (SW) during the cycle of soybean culture and to assess the productivity of it. The experiment was conducted at the Agricultural Engineering Experimental Center of UNIOESTE. The soil was classified as typical Distroferric Red Latosol. There were twenty-four drainage lysimeters in the area in which the soybean was cultivated, cultivar CD 214. Four SW depths (0; 100; 200 and 300 m³ ha-1) were applied to the soil seven days before the sowing in a single application combined with two mineral fertilizations in the sowing (with and without recommended fertilization during sowing), and three repetitions per treatment. It was realized three collections of percolate in each experimental portion, the first was conducted 40 days after sowing (DAS); the second at 72 DAS, and the third at the end of crop cycle (117 DAS). It was evaluated in the percolate the pH, calcium, magnesium, potassium, phosphorus, and total nitrogen. Based on the results, it was possible to observe that the level of K, P and N in the soil increased according tothe increase of SW rates. The levels of K and P in the percolate were higher for higher rates of SW. The productivity was not influenced by the application of SW or by fertilization.
Resumo:
The aim of this study was to compare the use of water and nitrogen on ratoon sugarcane during irrigated and rain-fed conditions, and to assess the production potential of stalks and sugar with different rates of N-fertilizer on the subsurface drip-irrigated management. The experimental design was a randomized block with four replications for each experiment and treatments: (T1) irrigated, 0kg N ha-1; (T2) irrigated, 70kg N ha-1; (T3) irrigated, 140kg N ha-1; (T4) irrigated, 210kg N ha-1; (T5) not irrigated, 0kg N ha-1, and (T6) not irrigated, 140kg N ha-1. Biometric, technological, dry matter and yield variables were analyzed among the treatments. The irrigation system together with the application of N-fertilizer at 140kg ha-1 presented significant differences in dry matter accumulation of shoots, and for the production of stalks and sugar, respectively 94, 105 and 106%, higher when compared to the not irrigated, without N-fertilizer (T5). There was a positive and synergistic effect of irrigation with N-fertilizer on the productivity of stalks and sugar. Ratoon sugarcane irrigated with subsurface dripping had the highest yield (22Mg ha-1 of sugar) with the dosage of 140kg ha-1 N.
Resumo:
The goal of this study was to evaluate the nitrogen fertilization as deep litter for pigs in order to produce biomass and accumulate nutrients by the corn. A deep litter made of rice husk as organic compound, from a commercial pig farm during finishing phase, was used. After three consecutive batches of pigs, the deep litter was subjected to a maturation period of 50 days, and samples of this material were taken for analysis of agronomic value. The experimental design was completely randomized with five replicates. The treatments consisted of doses of 0, 75, 150 and 300mg dm-3 of N of deep litter, as well as an additional treatment with ammonium sulfate, with a dosage of 150mg dm-3 of N. After 45 days, corn plants were harvested in order to evaluate the total dry weight and nutrient concentrations of their aerial parts. Dry matter increases were found with more application of deep litter. Regarding control fertilization, the use of increasing dosages of deep litter allowed accumulation of K, reduced the availability of P, Ca, Mg, Zn and B and did not alter the concentrations of N, Cu, Fe and Mn.