197 resultados para Nitrogen Availability
Resumo:
The objective of this work was to evaluate the change in soil C and N mineralization due to successive pig slurry application under conventional tillage (CT) and no tillage (NT) systems. The experiment was carried out in a clayey Latossolo Vermelho eutrófico (Rhodic Eutrudox) in Palotina, PR, Brazil. Increasing doses of pig slurry (0, 30, 60 and 120 m³ ha-1 per year) were applied in both tillage systems, with three replicates. Half of the pig slurry was applied before summer soil preparation, and the other half before the winter crop season. The areas were cultivated with soybean (Glycine max L.) and maize (Zea mays L.) in the summers of 1998 and 1999, respectively, and with wheat (Triticum sativum Lam.) in the winters of both years. Soil samples were collected at 0-5, 5-10, and 10-20 cm depths. Under both CT and NT systems, pig slurry application increased C and N mineralization. However, increasing pig slurry additions decreased the C to N mineralization ratio. Under the NT system, C and N mineralization was greater than in CT system.
Resumo:
The objective of this work was to evaluate the effect on forage yield of sowing winter forage species before and after soybean harvest, at different nitrogen application levels. The experiment was set out in a randomized block design with a strip-split plot arrangement, and three replicates. Sowing methods (18 days before soybean harvest and six days after soybean harvest) were allocated in the main plots, and the combination among forage species (Avena strigosa cv. IAPAR 61 + Lolium multiflorum; A. strigosa cv. Comum + L. multiflorum; A. strigosa cv. Comum + L. multiflorum + Vicia villosa; A. strigosa cv. Comum + L. multiflorum + Raphanus sativus; and L. multiflorum) and nitrogen levels (0, 140, 280 and 420 kg ha-1) in the plots and subplots, respectively. Forage sowing before the soybean harvest made it possible to anticipate first grazing by 14 days, with satisfactory establishment of forage species without affecting forage production. This method permitted a longer grazing period, preventing the need for soil disking, besides allowing the use of no-tillage system. The mixture of forage species enables higher forage yield for pasture in relation to single species pastures, with response to nitrogen fertilization up to 360 kg ha-1.
Resumo:
The objective of this work was to evaluate changes in the photosynthetic photon flux density (PPFD) interception efficiency and PPFD extinction coefficient for maize crop subjected to different soil tillage systems and water availability levels. Crops were subjected to no-tillage and conventional tillage systems combined with full irrigation and non-irrigation treatments. Continuous measurements of transmitted PPFD on the soil surface and incoming PPFD over the canopy were taken throughout the crop cycle. Leaf area index and soil water potential were also measured during the whole period. Considering a mean value over the maize cycle, intercepted PPFD was higher in the conventional tillage than in the no-tillage system. During the initial stages of plants, intercepted PPFD in the conventional tillage was double the PPFD interception in the no-tillage treatment. However, those differences were reduced up to the maximum leaf area index, close to tasseling stage. The lowest interception of PPFD occurred in the conventional tillage during the reproductive period, as leaf senescence progressed. Over the entire crop cycle, the interception of PPFD by the non-irrigated plants was about 20% lower than by the irrigated plants. The no-tillage system reduced the extinction coefficient for PPFD, which may have allowed a higher penetration of solar radiation into the canopy
Resumo:
The objective of this work was to evaluate the utilization by corn plants of P from triple superphosphate fertilizer labeled with 32P (32P‑TSP), and of P from soil as affected by N rates and by the green manures (GM) sunn hemp (Crotalaria juncea) and millet (Pennisetum glaucum). The experiment was carried out using pots filled with 5 kg Oxisol (Rhodic Hapludox). A completely randomized design was used, in a 4x4x2 factorial arrangement, with four replicates. The treatments were: four P rates as TSP (0, 0.175, 0.350, and 0.700 g P per pot); four N rates as urea (0, 0.75, 1.50, and 2.25 g N per pot); and sunn hemp or millet as green manure. The additions of N and P by the GM were taken into account. After grain physiologic maturation, corn dry matter, P contents, accumulated P, and P recovery in the different treatments were measured. 32P‑TSP recovery by corn increased with N increasing rates, and decreased with increasing rates of 32P‑TSP. The mineral fertilizer provides most of the accumulated P by corn plants. The recovery of 32P‑TSP by corn was 13.12% in average. The green manure species influence the assimilation of 32P‑TSP by the plants.
Resumo:
The objective of this work was to evaluate the agroindustrial production of sugarcane (millable stalks and sucrose yield) after successive nitrogen fertilizations of plant cane and ratoons in a reduced tillage system. The experiment was carried out at Jaboticabal, SP, Brazil, on a Rhodic Eutrustox soil, during four consecutive crop cycles (March 2005 to July 2009). Plant cane treatments consisted of N-urea levels (control, 40, 80, and 120 kg ha-1 N + 120 kg ha-1 P2O5 and K2O in furrow application). In the first and second ratoons, the plant cane plots were subdivided in N-ammonium nitrate treatments (control, 50, 100, and 150 kg ha-1 N + 150 kg ha-1 K2O as top dressing over rows). In the third ratoon, N fertilization was leveled to 100 kg ha-1 in all plots, including controls, to detect residual effects of previous fertilizations on the last crop's cycle. Sugarcane ratoon was mechanically harvested. A weighing truck was used to evaluate stalk yield (TCH), and samples were collected in the field for analysis of sugar content (TSH). Increasing N doses and meteorological conditions promote significant responses in TCH and TSH in cane plant and ratoons, in the average and accumulated yield of the consecutive crop cycles.
Resumo:
The objective of this work was to measure the fluxes of N2O‑N and NH3‑N throughout the growing season of irrigated common‑bean (Phaseolus vulgaris), as affected by mulching and mineral fertilization. Fluxes of N2O‑N and NH3‑N were evaluated in areas with or without Congo signal grass mulching (Urochloa ruziziensis) or mineral fertilization. Fluxes of N were also measured in a native Cerrado area, which served as reference. Total N2O‑N and NH3‑N emissions were positively related to the increasing concentrations of moisture, ammonium, and nitrate in the crop system, within 0.5 m soil depth. Carbon content in the substrate and microbial biomass within 0.1 m soil depth were favoured by Congo signal grass and related to higher emissions of N2O‑N, regardless of N fertilization. Emission factors (N losses from the applied mineral nitrogen) for N2O‑N (0.01-0.02%) and NH3‑N (0.3-0.6%) were lower than the default value recognized by the Intergovernmental Panel on Climate Change. Mulch of Congo signal grass benefits N2O‑N emission regardless of N fertilization.
Resumo:
The objective of this work was to evaluate the use of multispectral remote sensing for site-specific nitrogen fertilizer management. Satellite imagery from the advanced spaceborne thermal emission and reflection radiometer (Aster) was acquired in a 23 ha corn-planted area in Iran. For the collection of field samples, a total of 53 pixels were selected by systematic randomized sampling. The total nitrogen content in corn leaf tissues in these pixels was evaluated. To predict corn canopy nitrogen content, different vegetation indices, such as normalized difference vegetation index (NDVI), soil-adjusted vegetation index (Savi), optimized soil-adjusted vegetation index (Osavi), modified chlorophyll absorption ratio index 2 (MCARI2), and modified triangle vegetation index 2 (MTVI2), were investigated. The supervised classification technique using the spectral angle mapper classifier (SAM) was performed to generate a nitrogen fertilization map. The MTVI2 presented the highest correlation (R²=0.87) and is a good predictor of corn canopy nitrogen content in the V13 stage, at 60 days after cultivating. Aster imagery can be used to predict nitrogen status in corn canopy. Classification results indicate three levels of required nitrogen per pixel: low (0-2.5 kg), medium (2.5-3 kg), and high (3-3.3 kg).
Resumo:
The objective of this work was to evaluate the effectiveness of ruzigrass (Urochloaruziziensis) in enhancing soil-P availability in areas fertilized with soluble or reactive rock phosphates. The area had been cropped for five years under no-till, in a system involving soybean, triticale/black-oat, and pearl millet. Previously to the five-year cultivation period, corrective phosphorus fertilization was applied once on soil surface, at 0.0 and 80 kg ha-1 P2O5, as triple superphosphate or Arad rock phosphate. After this five-year period, plots received the same corrective P fertilization as before and ruzigrass was introduced to the cropping system in the stead of the other cover crops. Soil samples were taken (0-10 cm) after ruzigrass cultivation and subjected to soil-P fractionation. Soybean was grown thereafter without P application to seed furrow. Phosphorus availability in plots with ruzigrass was compared to the ones with spontaneous vegetation for two years. Ruzigrass cultivation increased inorganic (resin-extracted) and organic (NaHCO3) soil P, as well as P concentration in soybean leaves, regardless of the P source. However, soybean yield did not increase significantly due to ruzigrass introduction to the cropping system. Soil-P availability did not differ between soluble and reactive P sources. Ruzigrass increases soil-P availability, especially where corrective P fertilization is performed.
Resumo:
The objective of this work was to isolate and characterize rhizobia from nodules of Centrolobium paraense and to evaluate their symbiotic efficiency. Soil samples collected from four sites of the Roraima Cerrado, Brazil, were used to cultivate C. paraense in order to obtain nodules. Isolates (178) were obtained from 334 nodules after cultivation on medium 79. Twenty-five isolates belonging to six morphological groups were authenticated using Vigna unguiculata and they were characterized by 16S rRNA. Isolates identified as Bradyrhizobium were further characterized using rpoB gene sequencing. A greenhouse experiment was carried out with C. paraense to test the 18 authenticated isolates. Approximately 90% of the isolates grew slowly in medium 79. The 16S rRNA analysis showed that 14 authenticated isolates belong to the genus Bradyrhizobium, and rpoB indicated they constitute different groups compared to previously described species. Only four of the 11 fast-growing isolates nodulated V. unguiculata, two of which belong to Rhizobium, and two to Pleomorphomonas, which was not previously reported as a nodulating genus. The Bradyrhizobium isolates ERR 326, ERR 399, and ERR 435 had the highest symbiotic efficiency on C. paraense and showed a contribution similar to the nitrogen treatment. Centrolobium paraense is able to nodulate with different rhizobium species, some of which have not yet been described.
Resumo:
The objective of this work was to evaluate the contribution of efficient nitrogen-fixing rhizobial strains to grain yield of new cowpea cultivars, indicated for cultivation in the Brazilian Semiarid region, in the sub-medium of the São Francisco River Valley. Two experiments were set up at the irrigated perimeters of Mandacaru (Juazeiro, state of Bahia) and Bebedouro (Petrolina, state of Pernambuco). The treatments consisted of single inoculation of five rhizobial strains - BR 3267, BR 3262, INPA 03-11B, UFLA 03-84 (Bradyrhizobiumsp.), and BR 3299T(Microvirga vignae) -, besides a treatment with nitrogen and a control without inoculation or N application. The following cowpea cultivars were evaluated: BRS Pujante, BRS Tapaihum, BRS Carijó, and BRS Acauã. A randomized complete block design, with four replicates, was used. Inoculated plants showed similar grain yield to the one observed with plants fertilized with 80 kg ha-1 N. The cultivars BRS Tapaihum and BRS Pujante stood out in grain yield and protein contents when inoculated, showing their potential for cultivation in the sub-medium of the São Francisco River Valley.
Resumo:
The objective of this work was to estimate the amounts of N fixed by cowpea in a traditional system and by cowpea and gliricidia in an agroforestry system in the Brazilian Northeast semiarid. The experiment was carried out in a randomized complete block design, in a split-plot arrangement, with four replicates, in the semiarid region of the state of Paraíba, Brazil. Plots consisted of agroforestry and traditional systems (no trees), and split-plots of the three crops planted between the tree rows in the agroforestry system. To estimate N fixation, plant samples were collected in the fourth growth cycle of the perennial species and in the fourth planting cycle of the annual species. In the agroforestry system with buffel grass and prickly-pear cactus, gliricidia plants symbiotically fix high proportions of N (>50%) and contribute with higher N amounts (40 kg ha-1 in leaves) than in the traditional system (11 kg ha-1 in grain and 18 kg ha-1 in straw). In the agroforestry system with maize and cowpea, gliricidia plants do not fix nitrogen, and N input is limited to the fixation by cowpea (2.7 kg ha-1), which is lower than in the traditional system due to its lower biomass production.
Resumo:
Abstract:The objective of this work was to evaluate the effect of nitrogen fertilization on the growth and yield of arracacha (Arracacia xanthorrhiza), as well as on the plant's nutrient uptake, distribution, and removal. The experiment was carried out in a typical Oxisol, with sandy texture. A randomized complete block design was used, with four replicates. The treatments consisted of five N rates: 0, 50, 100, 200, and 400 kg ha-1. The plots were composed of three 8-m-length rows, spaced at 0.60 m between rows and 0.40 m between plants. The plants were harvested after an 8-month cycle. Nitrogen fertilization significantly increased the proportion of N and S accumulated in stems, and of Ca, Mg, Fe, and Mn in leaves. N supply increased Zn distribution to stems and leaves, whereas high N rates increased Cu allocation to stems more than to the rootstock. High N rates increase plant dry matter (DM) production and nutrient uptake and removal, but do not result in the greatest yield due to the greater development of leaves and stems, and to the lower allocation of DM in storage roots.
Resumo:
Abstract:The objective of this work was to evaluate whether a canopy sensor is capable of estimating sugarcane response to N, as well as to propose strategies for handling the data generated by this device during the decision-making process for crop N fertilization. Four N rate-response experiments were carried out, with N rates varying from 0 to 240 kg ha-1. Two evaluations with the canopy sensor were performed when the plants reached average stalk height of 0.3 and 0.5 m. Only two experiments showed stalk yield response to N rates. The canopy sensor was able to identify the crop response to different N rates and the relationship of the nutrient with sugarcane yield. The response index values obtained from the canopy sensor readings were useful in assessing sugarcane response to the applied N rate. Canopy reflectance sensors can help to identify areas responsive to N fertilization and, therefore, improve sugarcane fertilizer management.
Resumo:
Abstract:The objective of this work was to evaluate the effect of grazing intensity on the decomposition of cover crop pasture, dung, and soybean residues, as well as the C and N release rates from these residues in a long-term integrated soybean-beef cattle system under no-tillage. The experiment was initiated in 2001, with soybean cultivated in summer and black oat + Italian ryegrass in winter. The treatments consisted of four sward heights (10, 20, 30, and 40 cm), plus an ungrazed area, as the control. In 2009-2011, residues from pasture, dung, and soybean stems and leaves were placed in nylon-mesh litter bags and allowed to decompose for up to 258 days. With increasing grazing intensity, residual dry matter of the pasture decreased and that of dung increased. Pasture and dung lignin concentrations and C release rates were lower with moderate grazing intensity. C and N release rates from soybean residues are not affected by grazing intensity. The moderate grazing intensity produces higher quality residues, both for pasture and dung. Total C and N release is influenced by the greater residual dry matter produced when pastures were either lightly grazed or ungrazed.
Resumo:
Yield and physical and chemical characteristics of 'Paluma' guava fruit were evaluated as a function of the harvest at different maturity stages, under influence of nitrogen and potassium fertilization, in Petrolina, State of Pernambuco, Brazil. Fertilizer rates were 67 kg N + 33 kg K2O, 133 kg N + 67 kg K2O, 200 kg N + 100 kg K2O and 267 kg N + 133 kg K2O per hectare. Fruits were evaluated at maturity stages 2, 3, 4 and 5, established according to peel color. Higher doses of N and K induced higher yields. Nevertheless, fertilization with 200 kg of N + 100 kg of K per hectare improved fruit quality, delaying ascorbic acid breakdown and conserving pulp firmness. Main changes took place at maturity stages 4 and 5, when the fruit should present ideal conditions for consumption, namely the increase on soluble solids and soluble sugars content.