162 resultados para Interaction Patterns
Resumo:
Hepatitis B virus (HBV) molecular profiles were determined for 44 patients who were infected with human immunodeficiency virus (HIV) type 1 and had antibodies to the hepatitis B core antigen (anti-HBc), with and without other HBV serological markers. In this population, 70% of the patients were under lamivudine treatment as a component of antiretroviral therapy. HBV DNA was detected in 14 (32%) patients. Eight out of 12 (67%) HBsAg positive samples, 3/10 (30%) anti-HBc only samples, and 3/22 (14%) anti-HBs positive samples were HBV DNA positive. HBV DNA loads, measured by real time polymerase chain reaction, were much higher in the HBsAg positive patients (mean, 2.5 × 10(9) copies/ml) than in the negative ones (HBV occult infection; mean, 2.7 × 10(5) copies/ml). Nine out of the 14 HBV DNA positive patients were under lamivudine treatment. Lamivudine resistant mutations in the polymerase gene were detected in only three patients, all of them belonging to the subgroup of five HBsAg positive, HBV DNA positive patients. A low mean HBV load (2.7 × 10(5) copies/ml) and an absence of lamivudine resistant mutations were observed among the cases of HBV occult infection.
Resumo:
Protease secretion by Giardia duodenalis trophozoites upon interaction with epithelial cells and its association with the parasite adhesion was studied in co-cultures of parasites with IEC6 epithelial cell monolayers in the presence or absence of protease inhibitors. Proteolytic activity in supernatants from trophozoites was enhanced when they were co-cultured with IEC6 cells. This activity was strongly inhibited by pre-incubation of live trophozoites with E-64 and TPCK and a concomitant inhibition of parasite adhesion to IEC6 cells was observed. These data suggest that trophozoites secrete cysteine-type proteases that play a role in the adhesion of G. duodenalis to epithelial cells.
Resumo:
Tuberculosis (TB) is an infectious disease that continues to take its toll on human lives. Paleopathological research indicates that it has been a significant cause of death among humans for at least five thousand years. Because of the devastating consequences to human health, social systems, and endangered primate species, TB has been the subject of many and varied research efforts throughout the world, efforts that are amassing an enormous amount of data concerning the causative agent Mycobacterium tuberculosis. Despite sequencing of the M. tuberculosis genome and numerous molecular epidemiological studies, many questions remain regarding the origin, evolution, and future co-evolutionary trajectory of M. tuberculosis and humans. Indeed, the origin of pre-Columbian New World TB has been and remains hotly debated, and resolution of this controversy will likely only come with integration of data and theory from multiple disciplines. In this paper, we discuss the pre-Columbian TB controversy, and then use research from biological and biomedical sciences to help inform paleopathological and archaeological studies of this ubiquitous disease that plagued our ancient forbears.
Resumo:
Between March 2000 and December 2001 a survey of the sand flies (Diptera: Phlebotominae) of French Guiana was carried out during 14 nights of captures with CDC light-traps and Malaise traps, and resulted in the collection of 2245 individuals of 38 species. The most abundant species were Lutzomyia (Trichophoromyia) ininii Floch & Abonnenc, Lu.(Psychodopygus) squamiventris maripaensis Floch & Abonnenc, and Lu .(Nyssomyia) flaviscutellata Mangabeira. Half of the collected sand flies females were dissected under field conditions and five species were found harboring Leishmania-like parasites. The Leishmania (Kinetoplastidae: Trypanosomatidae) species were identified by molecular typing, and for the first time Lu. (Nys.) flaviscutellata was found harboring Leishmania (Viannia) guyanensis and Lu. (Tri) ininii harboring unknown Leishmania. The first record for French Guiana of Lu. (Psy.) squamiventris maripaensis harboring L. (V.) naiffi, was also reported. The patterns of diversification of the human cutaneous leishmaniasis transmission in French Guiana are discussed.
Resumo:
In Argentina, the incidence of American Cutaneous Leishmaniasis (ACL) has shown a steady increase over the last few decades. In the Chaco biogeographical region, specifically, several outbreaks of ACL were recently reported in addition to the usual time-space scattering of ACL cases. However, little is known about the sandfly composition in the eastern, humid Chaco (HC) region or the western, dry Chaco (DC) region. Therefore, phlebotomine captures were performed throughout this region and an analysis of the distribution of reported ACL cases was conducted in order to assess the vector diversity in ACL endemic and epidemic scenarios in the Chaco region. The results support the hypothesis of two distinct patterns: (1) the DC, where Lutzomyia migonei was the most prevalent species, had isolated ACL cases and a zoonotic cycle; (2) the HC, where Lutzomyia neivai was the most prevalent species, had an increase in ACL incidence and outbreaks and an anthropozoonotic cycle. The epidemic risk in the Chaco region may be associated with the current climate trends, landscape modification, connection with other ACL foci, and Lu. neivai predominance and abundance. Therefore, changes in sandfly population diversity and density in the Chaco region are an indicator of emergent epidemic risk in sentinel capture sites.
Resumo:
Rhodnius ecuadoriensis is the second most important vector of Chagas Disease (CD) in Ecuador. The objective of this study was to describe (and compare) the life cycle, the feeding and defecation patterns under laboratory conditions of two populations of this specie [from the provinces of Manabí (Coastal region) and Loja (Andean region)]. Egg-to-adult (n = 57) development took an average of 189.9 ± 20 (Manabí) and 181.3 ± 6.4 days (Loja). Mortality rates were high among Lojan nymphs. Pre-feeding time (from contact with host to feeding initiation) ranged from 4 min 42 s [nymph I (NI)] to 8 min 30 s (male); feeding time ranged from 14 min 45 s (NI)-28 min 25 s (male) (Manabí) and from 15 min 25 s (NI)-28 min 57 s (nymph V) (Loja). The amount of blood ingested increased significantly with instar and was larger for Manabí specimens (p < 0.001). Defecation while feeding was observed in Manabí specimens from stage nymph III and in Lojan bugs from stage nymph IV. There was a gradual, age-related increase in the frequency of this behaviour in both populations. Our results suggest that R. ecuadoriensis has the bionomic traits of an efficient vector of Trypanosoma cruzi. Together with previous data on the capacity of this species to infest rural households, these results indicate that control of synanthropic R. ecuadoriensis populations in the coastal and Andean regions may have a significant impact for CD control in Ecuador and Northern Peru.
Resumo:
Infection by the protozoan parasite Toxoplasma gondii is widely prevalent in humans and animals. To prevent human infection, all meat should be well cooked before consumption, since the parasite is present in skeletal muscle. In this context, the use of skeletal muscle cells (SkMCs) as a cellular model opens up new approaches to investigate T. gondii-host cell interactions. Immunofluorescent detection of proteins that are stage-specific for bradyzoites indicated that complete cystogenesis of T. gondii in in vitro cultures of SkMCs occurs after 96 h of infection. Ultrastructural analysis showed that, after 48 h of interaction, there were alterations on the parasitophorous vacuole membrane, including greater thickness and increased electron density at the inner face of the membrane. The present study demonstrates the potential use of primary cultures of SkMCs to evaluate different molecular aspects of T. gondii invasion and cystogenesis and presents a promising in vitro model for the screening of drug activities toward tissue cysts and bradyzoites.
Resumo:
Paracoccidioides brasiliensis causes infection through inhalation by the host of airborne propagules from the mycelium phase of the fungus. This fungus reaches the lungs, differentiates into the yeast form and is then disseminated to virtually all parts of the body. Here we review the identification of differentially-expressed genes in host-interaction conditions. These genes were identified by analyzing expressed sequence tags (ESTs) from P. brasiliensis cDNA libraries. The P. brasiliensis was recovered from infected mouse liver as well as from fungal yeast cells incubated in human blood and plasma, mimicking fungal dissemination to organs and tissues and sites of infection with inflammation, respectively. In addition, ESTs from a cDNA library of P. brasiliensis mycelium undergoing the transition to yeast were previously analyzed. Together, these studies reveal significant changes in the expression of a number of genes of potential importance in the host-fungus interaction. In addition, the unique and divergent representation of transcripts when the cDNA libraries are compared suggests differential gene expression in response to specific niches in the host. This analysis of gene expression patterns provides details about host-pathogen interactions and peculiarities of sites within the host.
Resumo:
Histoplasma capsulatum is an intracellular fungal pathogen that causes respiratory and systemic disease by proliferating within phagocytic cells. The binding of H. capsulatum to phagocytes may be mediated by the pathogen's cell wall carbohydrates, glucans, which consist of glucose homo and hetero-polymers and whose glycosydic linkage types differ between the yeast and mycelial phases. The ±-1,3-glucan is considered relevant for H. capsulatum virulence, whereas the ²-1,3-glucan is antigenic and participates in the modulation of the host immune response. H. capsulatum cell wall components with lectin-like activity seem to interact with the host cell surface, while host membrane lectin-like receptors can recognize a particular fungal carbohydrate ligand. This review emphasizes the relevance of the main H. capsulatum and host carbohydrate-driven interactions that allow for binding and internalization of the fungal cell into phagocytes and its subsequent avoidance of intracellular elimination.
Resumo:
The influence of blood meal and mating on Triatoma brasiliensis (Neiva) female fecundity, fertility, life-span and the preoviposition period were investigated under laboratory conditions. Nourishment increased fecundity, fertility and adult lifespan, whereas mating increased fecundity, fertility and decreased the preoviposition period. Females also required more than one mating to reach their full reproductive potential. Results indicate that both nourishment and mating are important in T. brasiliensis proliferation. Such information will help towards developing effective control strategies of this vector of Chagas disease.
Resumo:
Since the discovery of Trypanosoma cruzi and the brilliant description of the then-referred to "new tripanosomiasis" by Carlos Chagas 100 years ago, a great deal of scientific effort and curiosity has been devoted to understanding how this parasite invades and colonises mammalian host cells. This is a key step in the survival of the parasite within the vertebrate host, and although much has been learned over this century, differences in strains or isolates used by different laboratories may have led to conclusions that are not as universal as originally interpreted. Molecular genotyping of the CL-Brener clone confirmed a genetic heterogeneity in the parasite that had been detected previously by other techniques, including zymodeme or schizodeme (kDNA) analysis. T. cruzi can be grouped into at least two major phylogenetic lineages: T. cruzi I, mostly associated with the sylvatic cycle and T. cruzi II, linked to human disease; however, a third lineage, T. cruziIII, has also been proposed. Hybrid isolates, such as the CL-Brener clone, which was chosen for sequencing the genome of the parasite (Elias et al. 2005, El Sayed et al. 2005a), have also been identified. The parasite must be able to invade cells in the mammalian host, and many studies have implicated the flagellated trypomastigotes as the main actor in this process. Several surface components of parasites and some of the host cell receptors with which they interact have been described. Herein, we have attempted to identify milestones in the history of understanding T. cruzi- host cell interactions. Different infective forms of T. cruzi have displayed unexpected requirements for the parasite to attach to the host cell, enter it, and translocate between the parasitophorous vacuole to its final cytoplasmic destination. It is noteworthy that some of the mechanisms originally proposed to be broad in function turned out not to be universal, and multiple interactions involving different repertoires of molecules seem to act in concert to give rise to a rather complex interplay of signalling cascades involving both parasite and cellular components.
Resumo:
A cohort initiated with 121 eggs, yielding 105 first instar nymphs (eclosion rate: 86.78%), allowed us to observe the entire life cycle of Triatoma ryckmani under laboratory conditions (24ºC and 62% relative humidity), by feeding them on anesthetized hamsters. It was possible to obtain 62 adults and the cycle from egg to adult took a mean of 359.69 days with a range of 176-529 days (mortality rate of nymphs: 40.95%). Mean life span of adults was of 81 days for females and 148 days for males. The developmental periods of 4th and 5th nymphs were longer than those of the other instars. This suggests that young siblings have a better chance of taking a hemolymph meal from older ones, in order to survive during fasting periods during prolonged absences of vertebrate hosts from natural ecotopes. The stomach contents of 37 insects showed blood from rodents (15 cases), lizards (7 cases), birds (6 cases) and insect hemolymph (7 cases). Out of 10 insects fed by xenodiagnosis on a Trypanosoma cruzi infected mouse, all but one became infected with the parasite.
Resumo:
In vertebrate animals, pleural and peritoneal cavities are repositories of milky spots (MS), which constitute an organised coelom-associated lymphomyeloid tissue that is intensively activated by Schistosoma mansoni infection. This study compared the reactive patterns of peritoneal MS to pleural MS and concluded from histological analysis that they represent independent responsive compartments. Whole omentum, lungs and the entire mediastinum of 54 S. mansoni-infected mice were studied morphologically. The omental MS of infected animals were highly activated, modulating from myeloid-lymphocytic (60 days of infection) to lymphomyeloid (90 days of infection) and lymphocytic or lymphoplasmacytic (160 days of infection) types. The non-lymphoid component predominated in the acute phase of infection and was expressed by monocytopoietic, eosinopoietic and neutropoietic foci, with isolated megakaryocytes and small foci of late normoblasts and mast cells. Nevertheless, pleural or thoracic MS of infected mice were monotonous, consisting of small and medium lymphocytes with few mast and plasma cells and no myeloid component. Our data indicate that compartmentalisation of the MS response is dependent on the lymphatic vascularisation of each coelomic cavity, limiting the effects or consequences of any stimulating or aggressive agents, as is the case with S. mansoni infection.
Resumo:
For the last two decades, ultrasound (US) has been considered a surrogate for the gold standard in the evaluation of liver fibrosis in schistosomiasis. The use of magnetic resonance imaging (MRI) is not yet standardised for diagnosing and grading liver schistosomal fibrosis. The aim of this paper was to analyse MRI using an adaptation of World Health Organization (WHO) patterns for US assessment of schistosomiasis-related morbidity. US and MRI were independently performed in 60 patients (42.1 ± 13.4 years old), including 37 men and 23 women with schistosomiasis. Liver involvement appraised by US and MRI was classified according to the WHO protocol from patterns A-F. Agreement between image methods was evaluated by kappa index (k). The correlation between US and MRI was poor using WHO patterns [k = 0.14; confidence interval (CI) 0.02; 0.26]. Even after grouping image patterns as "A-D", "Dc-E" and "Ec-F", the correlation between US and MRI remained weak (k = 0.39; CI 0.21; 0.58). The magnetic resonance adaptation used in our study did not confirm US classification of WHO patterns for liver fibrosis.
Resumo:
Infection caused by the trematode Echinostoma paraensei has been shown to interfere in the natural resistance to infection by Schistosoma mansoni. Biomphalaria glabrata is susceptible to infection, while Taim isolate Biomphalaria tenagophila is resistant to infection by S. mansoni. These two snail species were assessed for infection with E. paraensei two days after exposure to S. mansoni miracidia. The number of B. tenagophila and B. glabrata infected with E. paraensei was lower in co-infected group, suggesting an antagonistic relationship. B. glabrata showed an increase in its susceptibility to S. mansoni, whereas B. tenagophila maintained its refractoriness to S. mansoni infection. Weekly comparisons made between the E. paraensei cercariae released from B. tenagophila and B. glabrata mono-infected snails revealed no quantitative differences. In contrast, S. mansoni cercariae released were higher in the B. glabrata co-infected group. Mortality rates were significantly greater in both species pertaining to co-infected group and unexpected mortalities were also observed in B. tenagophila exposed only to S. mansoni miracidia. Our study revealed that the B. tenagophila Taim isolate is susceptible to E. paraensei infection, although infection did not alter its resistance to S. mansoni infection.