157 resultados para Glycosylated hemoglobin A
Resumo:
The fetal hemoglobin (HbF) levels and ßS-globin gene haplotypes of 125 sickle cell anemia patients from Brazil were investigated. We sequenced the Gg- and Ag-globin gene promoters and the DNase I-2 hypersensitive sites in the locus control regions (HS2-LCR) of patients with HbF level disparities as compared to their ßS haplotypes. Sixty-four (51.2%) patients had CAR/Ben genotype; 36 (28.8%) Ben/Ben; 18 (14.4%) CAR/CAR; 2 (1.6%) CAR/Atypical; 2 (1.6%) Ben/Cam; 1 (0.8%) CAR/Cam; 1 (0.8%) CAR/Arab-Indian, and 1 (0.8%) Sen/Atypical. The HS2-LCR sequence analyses demonstrated a c.-10.677G>A change in patients with the Ben haplotype and high HbF levels. The Gg gene promoter sequence analyses showed a c.-157T>C substitution shared by all patients, and a c.-222_-225del related to the Cam haplotype. These results identify new polymorphisms in the HS2-LCR and Gg-globin gene promoter. Further studies are required to determine the correlation between HbF synthesis and the clinical profile of sickle cell anemia patients.
Resumo:
Anesthetics can affect the structure and biological function of tissues and systems differentially. The aim of the present study was to compare three injectable anesthetics generally used in experiments with animals in terms of the degree of hemolysis and glycogenolysis occurring after profound anesthesia. Twenty-four male Wistar rats (330-440 g) were divided into three groups (N = 8): chloral hydrate (CH), ketamine + xylazine (KX), Zoletil 50® (zolazepam and tiletamine) + xylazine (ZTX). After deep anesthesia, total blood was collected. The liver and white (WG) and red gastrocnemius (RG) muscles were also immediately removed. The degree of serum hemolysis was quantified on the basis of hemoglobin concentration (g/L). Hepatic and muscular glycogen concentrations (mmol/kg wet tissue) were quantified by the phenol-sulfuric method. The CH and KX groups exhibited serum hemolysis (4.0 ± 2.2 and 1.9 ± 0.9 g/L, respectively; P < 0.05) compared to the ZTX group, which presented none. Only KX induced elevated glycogenolysis (mmol/kg wet tissue) in the liver (86.9 ± 63.2) and in WG (18.7 ± 9.0) and RG (15.2 ± 7.2; P < 0.05). The CH and ZTX groups exhibited no glycogenolysis in the liver (164.4 ± 41.1 and 176.8 ± 54.4, respectively), WG (28.8 ± 4.4, 32.0 ± 6.5, respectively) or RG (29.0 ± 4.9; 25.3 ± 8.6, respectively). Our data indicate that ZTX seems to be an appropriate general anesthetic for studies that seek to simultaneously quantify the concentration of glycogen and serum biochemical markers without interferences. ZTX is reasonably priced, found easily at veterinary markets, quickly induces deep anesthesia, and presents a low mortality rate.
Resumo:
Fetal hemoglobin (HbF), encoded by the HBG2 and HBG1 genes, is the best-known genetic modulator of sickle cell anemia, varying dramatically in concentration in the blood of these patients. This variation is partially associated with polymorphisms located in the promoter region of the HBG2 and HBG1 genes. In order to explore known and unknown polymorphisms in these genes, the sequences of their promoter regions were screened in sickle cell anemia patients and correlated with both their HbF levels and their βS-globin haplotypes. Additionally, the sequences were compared with genes from 2 healthy groups, a reference one (N = 104) and an Afro-descendant one (N = 98), to identify polymorphisms linked to the ethnic background.The reference group was composed by healthy individuals from the general population. Four polymorphisms were identified in the promoter region of HBG2 and 8 in the promoter region of HBG1 among the studied groups. Four novel single nucleotide polymorphisms (SNP) located at positions -324, -317, -309 and -307 were identified in the reference group. A deletion located between -396 and -391 in the HBG2 promoter region and the SNP -271 C→T in the HBG1 promoter region were associated with the Central African Republic βS-globin haplotype. In contrast, the -369 C→G and 309 A→G SNPs in the HBG2 promoter region were correlated to the Benin haplotype. The polymorphisms -396_-391 del HBG2, -369 SNP HBG2 and -271 SNP HBG1 correlated with HbF levels. Hence, we suggest an important role of HBG2 and HBG1 gene polymorphisms on the HbF synthesis.
Resumo:
Alpha-thalassemia is the most common inherited disorder of hemoglobin synthesis. Genomic deletions involving the alpha-globin gene cluster on chromosome 16p13.3 are the most frequent molecular causes of the disease. Although common deletions can be detected by a single multiplex gap-PCR, the rare and novel deletions depend on more laborious techniques for their identification. The multiplex ligation-dependent probe amplification (MLPA) technique has recently been used for this purpose and was successfully used in the present study to detect the molecular alterations responsible for the alpha-thalassemic phenotypes in 8 unrelated individuals (3 males and 5 females; age, 4 months to 30 years) in whom the molecular basis of the disease could not be determined by conventional methods. A total of 44 probe pairs were used for MLPA, covering approximately 800 kb from the telomere to the MSLN gene in the 16p13.3 region. Eight deletions were detected. Four of these varied in size from 240 to 720 kb and affected a large region including the entire alpha-globin gene cluster and its upstream regulatory element (alpha-MRE), while the other four varied in size from 0.4 to 100 kb and were limited to a region containing this element. This study is the first in Brazil to use the MLPA method to determine the molecular basis of alpha-thalassemia. The variety of rearrangements identified highlights the need to investigate all cases presenting microcytosis and hypochromia, but without iron deficiency or elevated hemoglobin A2 levels and suggests that these rearrangements may be more frequent in our population than previously estimated.
Resumo:
Keratinases are enzymes of great importance involved in pathogenic processes of some fungi. They also have a widespread ecological role since they are responsible for the degradation and recycling of keratin. On the one hand, studying them furthers our knowledge of pathogenicity mechanisms, which has important implications for human health, and on the other hand, understanding their ecological role in keratin recycling has biotechnological potential. Here, a wild-type keratinolytic Candida parapsilosis strain isolated from a poultry farm was treated with ethyl methanesulfonate in order to generate mutants with increased keratinase activity. Mutants were then cultured on media with keratin extracted from chicken feathers as the sole source of nitrogen and carbon. Approximately 500 mutants were screened and compared with the described keratinolytic wild type. Three strains, H36, I7 and J5, showed enhanced keratinase activity. The wild-type strain produced 80 U/mL of keratinolytic activity, strain H36 produced 110 U/mL, strain I7, 130 U/mL, and strain J5, 140 U/mL. A 70% increase in enzyme activity was recorded for strain J5. Enzymatic activity was evaluated by zymograms with proteic substrates. A peptidase migrating at 100 kDa was detected with keratin, bovine serum albumin and casein. In addition, a peptidase with a molecular mass of 50 kDa was observed with casein in the wild-type strain and in mutants H36 and J5. Gelatinase activity was detected at 60 kDa. A single band of 35 kDa was found in wild-type C. parapsilosis and in mutants with hemoglobin substrate.
Resumo:
Electron paramagnetic resonance (EPR) spectroscopy of spin labels was used to monitor membrane dynamic changes in erythrocytes subjected to oxidative stress with hydrogen peroxide (H2O2). The lipid spin label, 5-doxyl stearic acid, responded to dramatic reductions in membrane fluidity, which was correlated with increases in the protein content of the membrane. Membrane rigidity, associated with the binding of hemoglobin (Hb) to the erythrocyte membrane, was also indicated by a spin-labeled maleimide, 5-MSL, covalently bound to the sulfhydryl groups of membrane proteins. At 2% hematocrit, these alterations in membrane occurred at very low concentrations of H2O2 (50 µM) after only 5 min of incubation at 37°C in azide phosphate buffer, pH 7.4. Lipid peroxidation, suggested by oxidative hemolysis and malondialdehyde formation, started at 300 µM H2O2 (for incubation of 3 h), which is a concentration about six times higher than those detected with the probes. Ascorbic acid and α-tocopherol protected the membrane against lipoperoxidation, but did not prevent the binding of proteins to the erythrocyte membrane. Moreover, the antioxidant (+)-catechin, which also failed to prevent the cross-linking of cytoskeletal proteins with Hb, was very effective in protecting erythrocyte ghosts from lipid peroxidation induced by the Fenton reaction. This study also showed that EPR spectroscopy can be useful to assess the molecular dynamics of red blood cell membranes in both the lipid and protein domains and examine oxidation processes in a system that is so vulnerable to oxidation.
Resumo:
The objective of this study was to investigate renal function in a cohort of 98 patients with sickle cell disease (SCD) followed up at a tertiary hospital in Brazil. Clinical and laboratory characteristics at the time of the most recent medical examination were analyzed. Renal function was evaluated by the estimation of glomerular filtration rate (GFR) by the criteria of the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI). We compared patients with normal GFR to patients with decreased GFR (<60 mL·min-1·(1.73 m²)-1) and hyperfiltration (>120 mL·min-1·(1.73 m²)-1). Comparison between patients according to the use of hydroxyurea and comparison of clinical and laboratory parameters according to GFR were also carried out. Average patient age was 33.8 ± 13.3 years (range 19-67 years), and 57 (58.1%) patients were females. The comparison of patients according to GFR showed that patients with decreased GFR (<60 mL·min-1·(1.73 m²)-1) were older, had lower levels of hematocrit, hemoglobin and platelets and higher levels of urea and creatinine. Independent risk factors for decreased GFR were advanced age (OR = 21.6, P < 0.0001) and anemia (OR = 39.6, P < 0.0001). Patients with glomerular hyperfiltration tended to be younger, had higher levels of hematocrit, hemoglobin and platelets and lower levels of urea and creatinine, with less frequent urinary abnormalities. Hydroxyurea, at the dosage of 500-1000 mg/day, was being administered to 28.5% of the patients, and there was no significant difference regarding renal function between the two groups. Further studies are required to establish the best therapeutic approach to renal abnormalities in SCD.
Resumo:
The amino acid arginine (Arg) is a recognized secretagogue of growth hormone (GH), and has been shown to induce GH gene expression. Arg is the natural precursor of nitric oxide (NO), which is known to mediate many of the effects of Arg, such as GH secretion. Arg was also shown to increase calcium influx in pituitary cells, which might contribute to its effects on GH secretion. Although the mechanisms involved in the effects of Arg on GH secretion are well established, little is known about them regarding the control of GH gene expression. We investigated whether the NO pathway and/or calcium are involved in the effects of Arg on GH gene expression in rat isolated pituitaries. To this end, pituitaries from approximately 170 male Wistar rats (~250 g) were removed, divided into two halves, pooled (three hemi-pituitaries) and incubated or not with Arg, as well as with different pharmacological agents. Arg (71 mM), the NO donor sodium nitroprusside (SNP, 1 and 0.1 mM) and a cyclic guanosine monophosphate (cGMP) analogue (8-Br-cGMP, 1 mM) increased GH mRNA expression 60 min later. The NO acceptor hemoglobin (0.3 µM) blunted the effect of SNP, and the combined treatment with Arg and L-NAME (a NO synthase (NOS) inhibitor, 55 mM) abolished the stimulatory effect of Arg on GH gene expression. The calcium channel inhibitor nifedipine (3 µM) also abolished Arg-induced GH gene expression. The present study shows that Arg directly induces GH gene expression in hemi-pituitaries isolated from rats, excluding interference from somatostatinergic neurons, which are supposed to be inhibited by Arg. Moreover, the data demonstrate that the NOS/NO signaling pathway and calcium mediate the Arg effects on GH gene expression.
Resumo:
Circulating microRNAs (miRNAs) may represent a potential noninvasive molecular biomarker for various pathological conditions. Moreover, the detection of circulating miRNAs can provide important novel disease-related information. In particular, inflammation-associated miR-155 and endothelial-enriched miR-126 are reported to be associated with vascular homeostasis. Vascular damage is a common event described in end-stage renal disease (ESRD). We hypothesized that miR-155 and miR-126 may be detectable in the circulation and serve as potential biomarkers for risk stratification. In this study, we assessed miR-155 and miR-126 in the plasma of 30 ESRD patients and 20 healthy controls using real-time quantification RT-PCR. The circulating levels of miR-155 and miR-126 were significantly reduced in patients with ESRD compared to healthy controls. However, there was no significant difference of circulating miR-155 and miR-126 levels between prehemodialysis and posthemodialysis patients. Furthermore, both circulating miR-126 and miR-155 correlated positively with estimated glomerular filtration rate (miR-126: r = 0.383, P = 0.037; miR-155: r = 0.494, P = 0.006) and hemoglobin (miR-126: r = 0.515, P = 0.004; miR-155: r = 0.598, P < 0.001) and correlated inversely with phosphate level (miR-126: r = -0.675, P < 0.001; miR-155: r = -0.399, P = 0.029). Pearson’s correlation was used to compare circulating levels of miRNAs with clinical parameters. These results suggested that circulating miR-155 and miR-126 might be involved in the development of ESRD. Further studies are needed to demonstrate the role of circulating miR-155 and miR-126 as candidate biomarkers for risk estimation.
Resumo:
Anemia is a frequent complication in hemodialysis patients. Compared to conventional hemodialysis (CHD), short daily hemodialysis (sDHD) has been reported to be effective in many countries except China. The aim of the present study was to determine whether sDHD could improve anemia and quality of life (QOL) for Chinese outpatients with end-stage renal disease. Twenty-seven patients (16 males/11 females) were converted from CHD to sDHD. All laboratory values were measured before conversion (baseline), at 3 months after conversion (sDHD1), and at 6 months after conversion (sDHD2). The patient's QOL was evaluated at baseline and 6 months after conversion using the Medical Outcomes Study 36-Item Short Form Health Survey (SF-36). Hemoglobin concentration increased significantly from 107.4±7.9 g/L at baseline to 114.4±6.8 g/L (P<0.05) at sDHD1, and 118.3±8.4 g/L (P<0.001) at sDHD2 (Student paired t-test). However, the dose requirement for erythropoietin decreased from 6847.8±1057.3 U/week at baseline to 5869.6±1094.6 U/week (P<0.05) at sDHD2. Weekly stdKt/V increased significantly from 2.05±0.13 at baseline to 2.73±0.20 (P<0.001) at sDHD1, and 2.84±0.26 (P<0.001) at sDHD2. C-reactive protein decreased from baseline to sDHD1 and sDHD2, but without statistically significant differences. Physical and mental health survey scores increased in the 6 months following conversion to sDHD. sDHD may increase hemoglobin levels, decrease exogenous erythropoietin dose requirements, and improve QOL in Chinese hemodialysis patients compared to CHD. A possible mechanism for improvement of clinical outcomes may be optimized management of uremia associated with the higher efficiency of sDHD.
Resumo:
The objective of this study was to evaluate cardiorespiratory fitness and pulmonary function and the relationship with metabolic variables and C-reactive protein (CRP) plasma levels in individuals with diabetes mellitus (DM). Nineteen men with diabetes and 19 age- and gender-matched control subjects were studied. All individuals were given incremental cardiopulmonary exercise and pulmonary function tests. In the exercise test, maximal workload (158.3±22.3vs 135.1±25.2, P=0.005), peak heart rate (HRpeak: 149±12 vs 139±10, P=0.009), peak oxygen uptake (VO2peak: 24.2±3.2 vs18.9±2.8, P<0.001), and anaerobic threshold (VO2VT: 14.1±3.4 vs 12.2±2.2, P=0.04) were significantly lower in individuals with diabetes than in control subjects. Pulmonary function test parameters, blood pressure, lipid profile (triglycerides, HDL, LDL, and total cholesterol), and CRP plasma levels were not different in control subjects and individuals with DM. No correlations were observed between hemoglobin A1C (HbA1c), CRP and pulmonary function test and cardiopulmonary exercise test performance. In conclusion, the results demonstrate that nonsmoking individuals with DM have decreased cardiorespiratory fitness that is not correlated with resting pulmonary function parameters, HbA1c, and CRP plasma levels.
Resumo:
The present study aimed to investigate visceral adipose tissue-specific serpin (vaspin) concentrations in serum and term placentas and relate these values to insulin resistance and lipid parameters in women with gestational diabetes mellitus (GDM). A total of 30 GDM subjects and 27 age-matched pregnant women with normal glucose tolerance (NGT, control) were included. Serum glucose, glycated hemoglobin (HbA1c), lipid profile, insulin, and vaspin were measured at the end of pregnancy, and homeostasis model of assessment-insulin resistance (HOMA-IR) values were calculated. Vaspin mRNA and protein levels in placentas were measured by real-time fluorescence quantitative reverse transcription polymerase chain reaction (RT-qPCR) and Western blotting, respectively. Serum vaspin levels were significantly lower in the GDM group than in controls (0.49±0.24 vs 0.83±0.27 ng/mL, respectively; P<0.01). Three days after delivery, serum vaspin levels were significantly decreased in subjects with GDM (0.36±0.13 vs0.49±0.24 ng/mL, P<0.01). However, in the GDM group, serum vaspin levels were not correlated with the parameters evaluated. In contrast, in the control group, serum vaspin levels were positively correlated with triglycerides (TG; r=0.45, P=0.02) and very low-density lipoprotein cholesterol (VLDL-C; r=0.42, P=0.03). Placental mRNA vaspin (0.60±0.32 vs0.68±0.32, P=0.46) and protein (0.30±0.08 vs0.39±0.26; P=0.33) levels in the GDM group did not differ significantly from those in the control group, but were negatively correlated with neonatal birth weight in the GDM group (r=-0.48, P=0.03; r=-0.88; P<0.01). Our findings indicated that vaspin may be an important adipokine involved in carbohydrate and lipid metabolism and may also play a role in fetal development.
Resumo:
The production of oxygen free radicals in type 2 diabetes mellitus contributes to the development of complications, especially the cardiovascular-related ones. Peroxiredoxins (PRDXs) are antioxidant enzymes that combat oxidative stress. The aim of this study was to investigate the associations between the levels of PRDX isoforms (1, 2, 4, and 6) and cardiovascular risk factors in type 2 diabetes mellitus. Fifty-three patients with type 2 diabetes mellitus (28F/25M) and 25 healthy control subjects (7F/18M) were enrolled. We measured the plasma levels of each PRDX isoform and analyzed their correlations with cardiovascular risk factors. The plasma PRDX1, -2, -4, and -6 levels were higher in the diabetic patients than in the healthy control subjects. PRDX2 and -6 levels were negatively correlated with diastolic blood pressure, fasting blood sugar, and hemoglobin A1c. In contrast, PRDX1 levels were positively correlated with low-density lipoprotein and C-reactive protein levels. PRDX4 levels were negatively correlated with triglycerides. In conclusion, PRDX1, -2, -4, and -6 showed differential correlations with a variety of traditional cardiovascular risk factors. These results should encourage further research into the crosstalk between PRDX isoforms and cardiovascular risk factors.
Resumo:
The familial acute myeloid leukemia related factor gene (FAMLF) was previously identified from a familial AML subtractive cDNA library and shown to undergo alternative splicing. This study used real-time quantitative PCR to investigate the expression of the FAMLF alternative-splicing transcript consensus sequence (FAMLF-CS) in peripheral blood mononuclear cells (PBMCs) from 119 patients with de novo acute leukemia (AL) and 104 healthy controls, as well as in CD34+cells from 12 AL patients and 10 healthy donors. A 429-bp fragment from a novel splicing variant of FAMLF was obtained, and a 363-bp consensus sequence was targeted to quantify total FAMLF expression. Kruskal-Wallis, Nemenyi, Spearman's correlation, and Mann-Whitney U-tests were used to analyze the data. FAMLF-CS expression in PBMCs from AL patients and CD34+ cells from AL patients and controls was significantly higher than in control PBMCs (P<0.0001). Moreover,FAMLF-CS expression in PBMCs from the AML group was positively correlated with red blood cell count (rs=0.317, P=0.006), hemoglobin levels (rs=0.210, P=0.049), and percentage of peripheral blood blasts (rs=0.256, P=0.027), but inversely correlated with hemoglobin levels in the control group (rs=–0.391, P<0.0001). AML patients with high CD34+ expression showed significantly higherFAMLF-CS expression than those with low CD34+ expression (P=0.041). Our results showed thatFAMLF is highly expressed in both normal and malignant immature hematopoietic cells, but that expression is lower in normal mature PBMCs.
Resumo:
This study aimed to compare the totally tubeless percutaneous nephrolithotomy and standard percutaneous nephrolithotomy techniques regarding their rates of success and complications in patients with kidney stones. Patients were randomly assigned to two groups. Forty-four patients (24 men; mean age: 50.40±2.02 years) received totally tubeless percutaneous nephrolithotomy (PCNL; no nephrostomy catheter or ureteral catheter after PCNL) and 40 patients (18 men; mean age: 49.95±13.38 years) underwent standard PCNL (a nephrostomy catheter and ureteral catheter were used after PCNL). All surgeries were performed by one surgeon. Postoperative changes in hemoglobin, the blood transfusion rate, changes in creatinine levels, operation time, analgesic need, hospitalization time, and complication rate were compared between the groups. No significant differences were observed in age, gender, stone size, and surgery side between the groups (P<0.05). The operation time was significantly lower in the totally tubeless PCNL group than in the standard PCNL group (P=0.005). Pethidine requirements were significantly higher in the standard PCNL group than the totally tubeless PCNL group (P=0.007). Hospitalization time was significantly higher in the standard PCNL group than in the totally tubeless PCNL group (P<0.0001). The complication rate was 15% in the standard PCNL group and 9.1% in the totally tubeless PCNL group (P=0.73). The totally tubeless PCNL technique is safe and effective, even for patients with staghorn stones. This technique is associated with decreased pain, analgesic needs, and operative and hospitalization time. We believe that a normal peristaltic ureter is the best drainage tube.