141 resultados para GLUTATHIONE SYNTHESIS
Resumo:
Effective statin therapy is associated with a marked reduction of cardiovascular events. However, the explanation for full benefits obtained for LDL cholesterol targets by combined lipid-lowering therapy is controversial. Our study compared the effects of two equally effective lipid-lowering strategies on markers of cholesterol synthesis and absorption. A prospective, open label, randomized, parallel design study, with blinded endpoints, included 116 subjects. We compared the effects of a 12-week treatment with 40 mg rosuvastatin or the combination of 40 mg simvastatin/10 mg ezetimibe on markers of cholesterol absorption (campesterol and β-sitosterol), synthesis (desmosterol), and their ratios to cholesterol. Both therapies similarly decreased total and LDL cholesterol, triglycerides and apolipoprotein B, and increased apolipoprotein A1 (P < 0.05 vs baseline for all). Simvastatin/ezetimibe increased plasma desmosterol (P = 0.012 vs baseline), and decreased campesterol and β-sitosterol (P < 0.0001 vs baseline for both), with higher desmosterol (P = 0.007) and lower campesterol and β-sitosterol compared to rosuvastatin, (P < 0.0001, for both). In addition, rosuvastatin increased the ratios of these markers to cholesterol (P < 0.002 vs baseline for all), whereas simvastatin/ezetimibe significantly decreased the campesterol/cholesterol ratio (P = 0.008 vs baseline) and tripled the desmosterol/cholesterol ratio (P < 0.0001 vs baseline). The campesterol/cholesterol and β-sitosterol/cholesterol ratios were lower, whereas the desmosterol/cholesterol ratio was higher in patients receiving simvastatin/ezetimibe (P < 0.0001 vs rosuvastatin, for all). Pronounced differences in markers of cholesterol absorption and synthesis were observed between two equally effective lipid-lowering strategies.
Resumo:
To understand the pathophysiological mechanisms of pulmonary arterial smooth muscle cell (PASMC) proliferation and extracellular-matrix accumulation in the development of pulmonary hypertension and remodeling, this study determined the effects of different doses of adrenomedullin (ADM) and adrenotensin (ADT) on PASMC proliferation and collagen synthesis. The objective was to investigate whether extracellular signal-regulated kinase (ERK1/2) signaling was involved in ADM- and ADT-stimulated proliferation of PASMCs in 4-week-old male Wistar rats (body weight: 100-150 g, n=10). The proliferation of PASMCs was examined by 5-bromo-2-deoxyuridine incorporation. A cell growth curve was generated by the Cell Counting Kit-8 method. Expression of collagen I, collagen III, and phosphorylated ERK1/2 (p-ERK1/2) was evaluated by immunofluorescence. The effects of different concentrations of ADM and ADT on collagen I, collagen III, and p-ERK1/2 protein expression were determined by immunoblotting. We also investigated the effect of PD98059 inhibition on the expression of p-ERK1/2 protein by immunoblotting. ADM dose-dependently decreased cell proliferation, whereas ADT dose-dependently increased it; and ADM and ADT inhibited each other with respect to their effects on the proliferation of PASMCs. Consistent with these results, the expression of collagen I, collagen III, and p-ERK1/2 in rat PASMCs decreased after exposure to ADM but was upregulated after exposure to ADT. PD98059 significantly inhibited the downregulation by ADM and the upregulation by ADT of p-ERK1/2 expression. We conclude that ADM inhibited, and ADT stimulated, ERK1/2 signaling in rat PASMCs to regulate cell proliferation and collagen expression.
Resumo:
Coronary angiography can be a high-risk condition for the incidence of contrast-induced nephropathy (CIN) in elderly patients. Reduced glutathione, under a variety of mechanisms, may prevent CIN in this procedure. We prospectively examined whether hydration with reduced glutathione is superior to hydration alone for prevention of CIN in an elderly Han Chinese population. A total of 505 patients (271 males and 234 females) aged 75 years or older who underwent non-emergency coronary angiography or an intervention were randomly divided into two groups. The treatment group received hydration with reduced glutathione (n=262) and the control group received hydration alone (n=243). Serum creatinine and blood urea nitrogen levels were measured prior to coronary angiography and 48 h after this procedure. The primary endpoint was occurrence of CIN, which was defined as 25% or 44.2 µmol/L above baseline serum creatinine levels 48 h after the procedure. The overall incidence of CIN was 6.49% in the treatment group and 7.41% in the control group, with no significant difference between the groups (P=0.68). In subgroup analysis by percutaneous coronary intervention, no significant differences were found between the two groups. In summary, reduced glutathione added to optimal hydration does not further decrease the risk of CIN in elderly patients undergoing coronary angiography or an intervention.
Resumo:
Damage to cartilage causes a loss of type II collagen (Col-II) and glycosaminoglycans (GAG). To restore the original cartilage architecture, cell factors that stimulate Col-II and GAG production are needed. Insulin-like growth factor I (IGF-I) and transcription factor SOX9are essential for the synthesis of cartilage matrix, chondrocyte proliferation, and phenotype maintenance. We evaluated the combined effect of IGF-I and SOX9 transgene expression on Col-II and GAG production by cultured human articular chondrocytes. Transient transfection and cotransfection were performed using two mammalian expression plasmids (pCMV-SPORT6), one for each transgene. At day 9 post-transfection, the chondrocytes that were over-expressing IGF-I/SOX9 showed 2-fold increased mRNA expression of the Col-II gene, as well as a 57% increase in Col-II protein, whereas type I collagen expression (Col-I) was decreased by 59.3% compared with controls. The production of GAG by these cells increased significantly compared with the controls at day 9 (3.3- vs 1.8-times, an increase of almost 83%). Thus, IGF-I/SOX9 cotransfected chondrocytes may be useful for cell-based articular cartilage therapies.
Resumo:
Due to the fact that previous studies on the enzymatic activity of Glutathione peroxidase (GSH-Px) diverge widely in their methodology and results, this study aimed to investigate the influence of different analytical conditions on GSH-Px activity in chicken thighs from broilers that were fed different diets with different sources and concentrations of selenium. GSH-Px activity was evaluated six hours after slaughter and 120 days after frozen storage at -18 ºC. The different analytical conditions included time of pre-incubation (0, 10 and 30 minutes), reaction medium, types of substrate (H2O2 (0.72 mM, 7.2 mM, and 72 mM) and Terc-butil hydroperoxide 15 mM), and different buffer concentrations (buffer 1, potassium phosphate 50 mM pH 7.0 + EDTA 1 mM + mercaptoethanol 1 mM, and buffer 2, tris-HCl 50 mM pH 7.6 + EDTA 1 mM + mercapthanol 5 mM). The results show that the highest GSH-Px activity was observed when enzyme and substrate were in contact at 22 ºC without any pre-incubation, and that, when used at concentrations above 0.72 mM, hydrogen peroxide saturated the GSH-Px enzyme and inhibited its activity. The enzyme presented higher affinity to hydrogen peroxide when compared to terc-butil peroxide, and the addition of a buffer containing mercaptoethanol did not increase GSH-Px enzymatic activity. The activity of GSH-Px was not influenced by the source and concentration of selenium in the diet either. The obtained results allowed the determination of the best temperature of contact between the enzyme and substrate (22 ºC), the optimum concentration, and the type of substrate and buffer to be used. This information is extremely useful for future studies on GSH-Px activity in meat due to the divergence and little information found in the literature.
Resumo:
AbstractThe objective of this study was to evaluate the genetic variability for synthesis of bioactive compounds in pepper (Capsicum annuum, Solanaceae). Total phenolics, anthocyanins, carotenoids and antioxidant activity were evaluated in 14 accessions of Capsicum annuum from the Capsicum Genebank of Embrapa Temperate Agriculture (Pelotas – RS, Brazil). Thirty plants of each accession were cultivated in the field during spring and summer. The experimental design was a complete randomized block with 14 treatments (accessions) and three replications. The laboratory evaluations followed the same experimental design to field, but with two repetitions more. Seeds were discarded and opposite longitudinal portions of fruits were manually prepared for chemical analyzes. The data obtained showed high genetic variability for phenolics, anthocyanins, carotenoids and antioxidant activity. The P39, P77, P119, P143 and P302 accessions exhibited the highest levels of antioxidants, which are strongly indicated to be used in breeding programs of Capsicum peppers.