142 resultados para GERMINATION PATTERN
Resumo:
The objective of this study was to evaluate the effects of temperature, substrate and pre-germinative treatments on T. triangulare seeds. Four temperatures (constant 20, 25, 30 °C and alternate 20-30 °C) and two types of seeding (on paper and between paper), with light, were evaluated. The pre-germinative treatments evaluated included: immersion in water (24 hours), immersion in 6% hypochlorite solution (1 hour), immersion in 0.2% potassium nitrate solution (24 hours), immersion in 0.05% gibberellin solution (24 hours) and the control (untreated seeds). The highest germination percentage was observed at the alternate temperatures of 20-30 ºC, but with no significant difference between the substrates at this temperature. Soaking seeds in KNO3 gave the highest percentage germination and germination speed index (GSI), which differed from the other treatments except for soaking in water. Pre-soaking of T. triangulare seeds favors germination and may be done only in pure water, resulting in a more rapid and uniform germination.
Resumo:
The effect of constant temperature on the germination rate and percentage of two cotton seed lots was determined using a thermogradient plate. A gradient of 10 ºC to 40 ºC was established across the plate so that temperatures changed 2 ºC for each 5 cm increment in length, resulting in sixteen different temperature treatments. The optimal temperature zone for germination was 28 ºC to 30 ºC. As temperature decreased from the optimal zone, the rate of germination also decreased but germination percentages during the 10-day period were significantly lower only below 20 ºC. As temperature increased above the optimal zone, the rate of germination decreased and the percentage of germination sharply decreased above 32 ºC - 34 ºC. As expected, high quality cotton seed performed better than medium quality seed for a low temperature range (16 ºC to 22 ºC), but the most intriguing results were observed for the high temperatures range (36 ºC to38 ºC). The germination of medium quality cotton seed was consistently higher than for high quality seed, especially at 38 ºC after the second day of evaluation. This response has not been reported in the literature and further research is needed to better understand the germination physiology of cotton seed at high temperatures.
Resumo:
The effect of chemical and biological treatments on castor bean emergence, seedling vigor, dry matter production, and also the control of microorganisms associated with seeds of the AL Guarany 2002 and Lyra cultivars, was evaluated. The products tested were carbendazim + thiram, carboxin + thiram and a product based on Trichoderma. Total seed and seedling emergence were evaluated at 27 days after sowing whereas dry matter production was verified for plants removed 45 days after sowing. The Guarany 2002 AL cultivar had a higher incidence of microorganisms than the Lyra cultivar. The chemical treatment was 100% effective in controlling fungi but the biological treatment did not reduce microorganism incidence on the seeds. Chemical treatment resulted in plants with more dry matter and the best results were for carbendazim + thiram and carboxin + thiram at doses of 60 g + 140 g and 50 g + 50 g/100 kg of seeds, respectively. The carbendazim + thiram mixture was the only treatment which was statistically higher for total emergence whereas the biological treatment increased emergence only for the Lyra cultivar, thus demonstrating its lower efficiency. The importance of fungicides to control pathogens associated with seeds was discussed.
Resumo:
The objective of this study was to determine the responses of the wheat cultivars CD 108 and CD 111 for tolerance to organic acids. The effects of five concentrations of the three main acids formed in the soil were studied: acetic acid (0, 4, 8, 12 and 16 mM), propionic acid (0, 4, 8, 12 and 16 mM) and butyric acid (0, 2, 4, 8 and 12 mM). Tests included germination, shoot length, root length and dry weight of shoot and root. The variable root length is the most responsive variable for all the acids tested and the critical level of toxicity of acetic, propionic and butyric acids, which reduced root length by at least 50% was 9.0, 8.5 and 4.0 mM respectively. It was concluded that the presence of acetic, propionic and butyric acids in the germination substratum of wheat seeds of the cultivars CD 111 and CD 108 reduced seedling development, mainly by reducing the length of the radicles.
Resumo:
The objective of this study was to characterize morphologically the seed germination and floral biology of Jatropha curcas grown in Viçosa, Minas Gerais state. The floral biology study was made on fresh inflorescences of 20 plants. For the post-seminal development study, the seeds were submitted to laboratory and greenhouse germination test. J. curcas has flowers of both sexes within the same inflorescence, with each inflorescence having an average of 131 flowers, being 120 male and 10.5 female flowers. Low numbers of hermaphrodite flowers were also found, ranging from 0 to 6 flowers per inflorescence. The germination of J. curcas begins on the third day with radicle protrusion in the hilum region. The primary root is cylindrical, thick, glabrous and branches rapidly, with about 4-5 branches three days after protrusion, when the emergence of the secondary roots begins. Seed coat removal occurs around the 8th day, when the endosperm is almost totally degraded and offers no resistance to the cotyledons that expand between the 10th and 12th day. A normal seedling has a long greenish hypocotyl, two cotyledons, a robust primary root and several lateral roots. On the 12th day after sowing, the normal seedling is characterized as phanerocotylar and germination is epigeal.
Resumo:
Some environmental factors, including water availability, may influence seed germination. This study investigated the germination of E. velutina seeds submitted to different osmotic potentials and mobilization of reserves during water-stress. Scarified seeds were arranged in paper rolls and soaked in solutions of Polyethylene Glycol (PEG) prepared in osmotic potentials 0.0, -0.2, -0.4, -0.6, and -0.8 MPa and kept into a seed germinator, at 25 °C, and 12/12 h photoperiod (L/D), during 10 days. The percentage, mean time, mean speed, germination speed index; as well as the germination uniformity coefficient were assessed. During germination process the total soluble sugars, reducing sugars, soluble protein, and total amino acids were quantified in the cotyledon, hypocotyl and radicle of soaked seeds and cotyledons of quiescent seeds (control). There was influence of osmotic potential on E. velutina seed germination. The germination percentage remained at high levels until -0.6 MPa and above this osmotic potential there has been no germination. The mobilization of stored reserves of carbon and nitrogen in E. velutina seeds was also influenced by water-stress. There was sensitiveness between -0.2 and -0.6 MPa; however, the degradation and the mobilization of reserves was slower when the osmotic potential decreased.
Resumo:
Structural differences such as abnormalities, damage and free spaces in seeds may affect germination. The aim of this study was to study the relationship between eggplant seed morphology and seed germination. Ten seed lots of the eggplant cultivar Embu were evaluated by X-ray image analysis and the germination test. Seed image analysis was performed by Image Pro Plus® software and the whole seed area and free space between the embryo and endosperm were measured. The internal seed area filled by the embryo and endosperm was calculated from the difference between the whole seed and free space areas. Based on these results and visual seed analysis, seeds were classified into three categories and information on germination was obtained for each one. X-ray image analysis provides a perfect view of the internal seed parts and for seed morphology studies. An increase in seed area filled by the endosperm and embryo does not improve seed germination. Mechanical seed damage and deteriorated tissues can adversely affect seed germination.