163 resultados para ENV GENES
Resumo:
The WT1 transcription factor regulates SRY expression during the initial steps of the sex determination process in humans, activating a gene cascade leading to testis differentiation. In addition to causing Wilms' tumor, mutations in WT1 are often responsible for urogenital defects in men, while SRY mutations are mainly related to 46,XY pure gonadal dysgenesis. In order to evaluate their role in abnormal testicular organogenesis, we screened for SRY and WT1 gene mutations in 10 children with XY partial gonadal dysgenesis, 2 of whom with a history of Wilms' tumor. The open reading frame and 360 bp of the 5' flanking sequence of the SRY gene, and the ten exons and intron boundaries of the WT1 gene were amplified by PCR of genomic DNA. Single-strand conformation polymorphism was initially used for WT1 mutation screening. Since shifts in fragment migration were only observed for intron/exon 4, the ten WT1 exons from all patients were sequenced manually. No mutations were detected in the SRY 5' untranslated region or within SRY open-reading frame sequences. WT1 sequencing revealed one missense mutation (D396N) in the ninth exon of a patient who also had Wilms' tumor. In addition, two silent point mutations were found in the first exon including one described here for the first time. Some non-coding sequence variations were detected, representing one new (IVS4+85A>G) and two already described (-7ATG T>G, IVS9-49 T>C) single nucleotide polymorphisms. Therefore, mutations in two major genes required for gonadal development, SRY and WT1, are not responsible for XY partial gonadal dysgenesis.
Resumo:
The establishment of dorsal-ventral polarity in Drosophila is a complex process which involves the action of maternal and zygotically expressed genes. Interspecific differences in the expression pattern of some of these genes have been described in other species. Here we present the expression of dorsal-ventral genes during early embryogenesis in the lower dipteran Rhynchosciara americana. The expression of four genes, the ventralizing genes snail (sna) and twist (twi) and the dorsalizing genes decapentaplegic (dpp) and zerknüllt (zen), was investigated by whole-mount in situ hybridization. Sense and antisense mRNA were transcribed in vitro using UTP-digoxigenin and hybridized at 55°C with dechorionated fixed embryos. Staining was obtained with anti-digoxigenin alkaline phosphatase-conjugated antibody revealed with NBT-BCIP solution. The results showed that, in general, the spatial-temporal expression of R. americana dorsal-ventral genes is similar to that observed in Drosophila, where twi and sna are restricted to the ventral region, while dpp and zen are expressed in the dorsal side. The differences encountered were subtle and probably represent a particular aspect of dorsal-ventral axis determination in R. americana. In this lower dipteran sna is expressed slightly later than twi and dpp expression is expanded over the lateral ectoderm during cellular blastoderm stage. These data suggest that the establishment of dorsal-ventral polarity in R. americana embryos follows a program similar to that observed in Drosophila melanogaster.
Resumo:
We determined whether over-expression of one of the three genes involved in reverse cholesterol transport, apolipoprotein (apo) AI, lecithin-cholesterol acyl transferase (LCAT) and cholesteryl ester transfer protein (CETP), or of their combinations influenced the development of diet-induced atherosclerosis. Eight genotypic groups of mice were studied (AI, LCAT, CETP, LCAT/AI, CETP/AI, LCAT/CETP, LCAT/AI/CETP, and non-transgenic) after four months on an atherogenic diet. The extent of atherosclerosis was assessed by morphometric analysis of lipid-stained areas in the aortic roots. The relative influence (R²) of genotype, sex, total cholesterol, and its main sub-fraction levels on atherosclerotic lesion size was determined by multiple linear regression analysis. Whereas apo AI (R² = 0.22, P < 0.001) and CETP (R² = 0.13, P < 0.01) expression reduced lesion size, the LCAT (R² = 0.16, P < 0.005) and LCAT/AI (R² = 0.13, P < 0.003) genotypes had the opposite effect. Logistic regression analysis revealed that the risk of developing atherosclerotic lesions greater than the 50th percentile was 4.3-fold lower for the apo AI transgenic mice than for non-transgenic mice, and was 3.0-fold lower for male than for female mice. These results show that apo AI overexpression decreased the risk of developing large atherosclerotic lesions but was not sufficient to reduce the atherogenic effect of LCAT when both transgenes were co-expressed. On the other hand, CETP expression was sufficient to eliminate the deleterious effect of LCAT and LCAT/AI overexpression. Therefore, increasing each step of the reverse cholesterol transport per se does not necessarily imply protection against atherosclerosis while CETP expression can change specific athero genic scenarios.
Resumo:
We analyzed the genetic recombination pattern of the T-cell receptor beta-chain gene (TCR-beta) in order to identify clonal expansion of T-lymphocytes in 17 human T-lymphotropic virus type I (HTLV-I)-positive healthy carriers, 7 of them with abnormal features in the peripheral blood lymphocytes. Monoclonal or oligoclonal expansion of T-cells was detected in 5 of 7 HTLV-I-positive patients with abnormal lymphocytes and unconfirmed diagnosis by using PCR amplification of segments of TCR-beta gene, in a set of reactions that target 102 different variable (V) segments, covering all members of the 24 V families available in the gene bank, including the more recently identified segments of the Vbeta-5 and Vbeta-8 family and the two diversity beta segments. Southern blots, the gold standard method to detect T-lymphocyte clonality, were negative for all of these 7 patients, what highlights the low sensitivity of this method that requires a large amount of very high quality DNA. To evaluate the performance of PCR in the detection of clonality we also analyzed 18 leukemia patients, all of whom tested positive. Clonal expansion was not detected in any of the negative controls or healthy carriers without abnormal lymphocytes. In conclusion, PCR amplification of segments of rearranged TCR-beta is reliable and highly suitable for the detection of small populations of clonal T-cells in asymptomatic HTLV-I carriers who present abnormal peripheral blood lymphocytes providing an additional instrument for following up these patients with potentially higher risk of leukemia.
Resumo:
Cloning of the T-cell receptor genes is a critical step when generating T-cell receptor transgenic mice. Because T-cell receptor molecules are clonotypical, isolation of their genes requires reverse transcriptase-assisted PCR using primers specific for each different Valpha or Vß genes or by the screening of cDNA libraries generated from RNA obtained from each individual T-cell clone. Although feasible, these approaches are laborious and costly. The aim of the present study was to test the application of the non-palindromic adaptor-PCR method as an alternative to isolate the genes encoding the T-cell receptor of an antigen-specific T-cell hybridoma. For this purpose, we established hybridomas specific for trans-sialidase, an immunodominant Trypanosoma cruzi antigen. These T-cell hybridomas were characterized with regard to their ability to secrete interferon-gamma, IL-4, and IL-10 after stimulation with the antigen. A CD3+, CD4+, CD8- interferon-gamma-producing hybridoma was selected for the identification of the variable regions of the T-cell receptor by the non-palindromic adaptor-PCR method. Using this methodology, we were able to rapidly and efficiently determine the variable regions of both T-cell receptor chains. The results obtained by the non-palindromic adaptor-PCR method were confirmed by the isolation and sequencing of the complete cDNA genes and by the recognition with a specific antibody against the T-cell receptor variable ß chain. We conclude that the non-palindromic adaptor-PCR method can be a valuable tool for the identification of the T-cell receptor transcripts of T-cell hybridomas and may facilitate the generation of T-cell receptor transgenic mice.
Resumo:
Diabetes mellitus (DM) is a highly prevalent complex genetic disorder. There has been a worldwide effort in the identification of susceptibility genes for DM and its complications, and the 5-10-methylenetetrahydrofolate reductase (MTHFR) and apolipoprotein-E (APOE) genes have been considered good candidate susceptibility genes to this condition. The objectives of the present study were to determine if the 677T MTHFR and epsilon2/epsilon3/epsilon4 APOE alleles are risk factors for DM and for severity of diabetic retinopathy (DR). A total of 248 individuals were studied: 107 healthy individuals and 141 diabetic patients (46 with type 1 diabetes and 95 with type 2 diabetes), who also had DR (81 with non-proliferative DR and 60 with proliferative DR). The polymorphisms were analyzed by PCR followed by digestion with restriction enzyme or the single-nucleotide primer extension method. No evidence of association between the 677TT genotype of MTHFR gene and DM [cases: TT = 10/95 (10.6%); controls: TT = 14/107 (13%)] or with severity of DR was observed [cases: TT = 5/60 (8.5%); controls: TT = 9/81 (11.1%); P > 0.05]. We also did not find evidence of an association between APOE alleles and proliferative DR (epsilon2, epsilon3 and epsilon4 in cases: 9, 76, and 15%, and in controls: 5, 88, and 12%, respectively) but the carriers of epsilon2 allele were more frequent among patients with type 2 DM and DR than in controls [cases: 15/95 (15.8%); controls: 7/107 (6.5%); P < 0.05]. Therefore, our results suggest that the epsilon2 allele/APOE might be a risk factor for diabetes in the Brazilian population.
Resumo:
Infant acute lymphoblastic leukemia (IALL) is characterized by mixed lineage leukemia (MLL) gene rearrangements, unique gene expression profiles, poor prognosis, and drug resistance. One exception is cytosine arabinoside (Ara-C) to which IALL cells seem to be more sensitive. We quantified mRNA expression of Ara-C key enzymes in leukemic lymphoblasts from 64 Brazilian ALL children, 15 of them presenting MLL gene rearrangement, and correlated it with clinical and biological features. The diagnosis was based on morphological criteria and immunophenotyping using monoclonal antibodies. MLL gene rearrangements were detected by conventional cytogenetic analysis, RT-PCR and/or fluorescence in situ hybridization. The DCK and HENT1 expression levels were determined by real-time quantitative PCR using SYBR Green I. Relative quantification was made by the standard curve method. The results were analyzed by Mann-Whitney and Fisher exact tests. A P value of £0.05 was considered to be statistically significant. DCK and HENT1 expression levels were significantly lower in children with MLL gene-rearranged ALL compared to children with MLL germ line ALL (P = 0.0003 and 0.03, respectively). Our results differ from previous ones concerning HENT1 mRNA expression that observed a higher expression level in MLL gene-rearranged leukemias. In conclusion, the expression of the genes related to Ara-C metabolism was lower in MLL-positive children in the sample studied, suggesting the presence of population differences in the expression profile of these genes especially for HENT1.
Polymorphisms in genes MTHFR, MTR and MTRR are not risk factors for cleft lip/palate in South Brazil
Resumo:
Non-syndromic cleft lip and palate (CL/P) occurs due to interaction between genetic and environmental factors. Abnormalities in homocysteine metabolism may play a role in its etiology due to polymorphisms in genes involved in this pathway. Because of the involvement of MTHFR, MTR and MTRR genes with folate metabolism and the evidence that maternal use of folic acid in early pregnancy reduces the risk for CL/P, we evaluated the influence of their polymorphisms on the etiology of CL/P through a case-control study. The analyses involved 114 non-syndromic phenotypically white children with clefts (case) and 110 mothers, and 100 non-affected (control) children and their mothers. The polymorphisms 677C>T of MTHFR, 2756A>G of MTR, and 66A>G of MTRR genes were analyzed by PCR-RFLP. Allelic frequencies did not differ from other studies conducted on white populations for MTHFR 677T allele (0.35) and for MTR 2756G allele (0.17), but MTRR 66G allele frequency (0.35) was lower than observed elsewhere. The genotypic distribution of the 677C>T polymorphisms under study did not show significant differences between CL/P patients, their mothers and controls. These results suggest that the alterations of folate metabolism related to these polymorphisms are not involved in clefting in the population under study.
Resumo:
Gastric cancer is the forth most frequent malignancy and the second most common cause of cancer death worldwide. DNA methylation is the most studied epigenetic alteration, occurring through a methyl radical addition to the cytosine base adjacent to guanine. Many tumor genes are inactivated by DNA methylation in gastric cancer. We evaluated the DNA methylation status of ANAPC1, CDKN2A and TP53 by methylation-specific PCR in 20 diffuse- and 26 intestinal-type gastric cancer samples and 20 normal gastric mucosa in individuals from Northern Brazil. All gastric cancer samples were advanced stage adenocarcinomas. Gastric samples were surgically obtained at the João de Barros Barreto University Hospital, State of Pará, and were stored at -80°C before DNA extraction. Patients had never been submitted to chemotherapy or radiotherapy, nor did they have any other diagnosed cancer. None of the gastric cancer samples presented methylated DNA sequences for ANAPC1 and TP53. CDKN2A methylation was not detected in any normal gastric mucosa; however, the CDKN2A promoter was methylated in 30.4% of gastric cancer samples, with 35% methylation in diffuse-type and 26.9% in intestinal-type cancers. CDKN2A methylation was associated with the carcinogenesis process for ~30% diffuse-type and intestinal-type compared to non-neoplastic samples. Thus, ANAPC1 and TP53 methylation was probably not implicated in gastric carcinogenesis in our samples. CDKN2A can be implicated in the carcinogenesis process of only a subset of gastric neoplasias.
Resumo:
Obesity is a complex multifactorial disorder that is often associated with cardiovascular diseases. Research on experimental models has suggested that cardiac dysfunction in obesity might be related to alterations in myocardial intracellular calcium (Ca2+) handling. However, information about the expression of Ca2+-related genes that lead to this abnormality is scarce. We evaluated the effects of obesity induced by a high-fat diet in the expression of Ca2+-related genes, focusing the L-type Ca2+ channel (Cacna1c), sarcolemmal Na+/Ca2+ exchanger (NCX), sarcoplasmic reticulum Ca2+ ATPase (SERCA2a), ryanodine receptor (RyR2), and phospholamban (PLB) mRNA in rat myocardium. Male 30-day-old Wistar rats were fed a standard (control) or high-fat diet (obese) for 15 weeks. Obesity was defined as increased percent of body fat in carcass. The mRNA expression of Ca2+-related genes in the left ventricle was measured by RT-PCR. Compared with control rats, the obese rats had increased percent of body fat, area under the curve for glucose, and leptin and insulin plasma concentrations. Obesity also caused an increase in the levels of SERCA2a, RyR2 and PLB mRNA (P < 0.05) but did not modify the mRNA levels of Cacna1c and NCX. These findings show that obesity induced by high-fat diet causes cardiac upregulation of Ca2+ transport_related genes in the sarcoplasmic reticulum.
Resumo:
Mycobacterium tuberculosis kills more people than any other single pathogen, with an estimated one-third of the world's population being infected. Among those infected, only 10% will develop the disease. There are several demonstrations that susceptibility to tuberculosis is linked to host genetic factors in twins, family and associated-based case control studies. In the past years, there has been dramatic improvement in our understanding of the role of innate and adaptive immunity in the human host defense to tuberculosis. To date, attention has been paid to the role of genetic host and parasitic factors in tuberculosis pathogenesis mainly regarding innate and adaptive immune responses and their complex interactions. Many studies have focused on the candidate genes for tuberculosis susceptibility ranging from those expressed in several cells from the innate or adaptive immune system such as Toll-like receptors, cytokines (TNF-α, TGF-β, IFN-γ, IL-1b, IL-1RA, IL-12, IL-10), nitric oxide synthase and vitamin D, both nuclear receptors and their carrier, the vitamin D-binding protein (VDBP). The identification of possible genes that can promote resistance or susceptibility to tuberculosis could be the first step to understanding disease pathogenesis and can help to identify new tools for treatment and vaccine development. Thus, in this mini-review, we summarize the current state of investigation on some of the genetic determinants, such as the candidate polymorphisms of vitamin D, VDBP, Toll-like receptor, nitric oxide synthase 2 and interferon-γ genes, to generate resistance or susceptibility to M. tuberculosis infection.
Resumo:
Radiologic breast density is one of the predictive factors for breast cancer and the extent of the density is directly related to postmenopause. However, some patients have dense breasts even during postmenopause. This condition may be explained by the genes that codify for the proteins involved in the biosynthesis, as well as the activity and metabolism of steroid hormones. They are polymorphic, which could explain the variations of individual hormones and, consequently, breast density. The constant need to find markers that may assist in the primary prevention of breast cancer as well as in selecting high risk patients motived this study. We determined the influence of genetic polymorphism of CYP17 (cytochrome P450c17, the gene involved in steroid hormone biosynthesis), GSTM1 (glutathione S-transferase M1, an enzyme involved in estrogen metabolism) and PROGINS (progesterone receptor), for association with high breast density. One hundred and twenty-three postmenopausal patients who were not on hormone therapy and had no clinical or mammographic breast alterations were included in the present study. The results of this study reveal that there was no association between dense breasts and CYP17 or GSTM1. There was a trend, which was not statistically significant (P = 0.084), towards the association between PROGINS polymorphism and dense breasts. However, multivariate logistic regression showed that wild-type PROGINS and mutated CYP17, taken together, resulted in a 4.87 times higher chance of having dense breasts (P = 0.030). In conclusion, in the present study, we were able to identify an association among polymorphisms, involved in estradiol biosyntheses as well as progesterone response, and radiological mammary density.
Resumo:
Fetal hemoglobin (HbF), encoded by the HBG2 and HBG1 genes, is the best-known genetic modulator of sickle cell anemia, varying dramatically in concentration in the blood of these patients. This variation is partially associated with polymorphisms located in the promoter region of the HBG2 and HBG1 genes. In order to explore known and unknown polymorphisms in these genes, the sequences of their promoter regions were screened in sickle cell anemia patients and correlated with both their HbF levels and their βS-globin haplotypes. Additionally, the sequences were compared with genes from 2 healthy groups, a reference one (N = 104) and an Afro-descendant one (N = 98), to identify polymorphisms linked to the ethnic background.The reference group was composed by healthy individuals from the general population. Four polymorphisms were identified in the promoter region of HBG2 and 8 in the promoter region of HBG1 among the studied groups. Four novel single nucleotide polymorphisms (SNP) located at positions -324, -317, -309 and -307 were identified in the reference group. A deletion located between -396 and -391 in the HBG2 promoter region and the SNP -271 C→T in the HBG1 promoter region were associated with the Central African Republic βS-globin haplotype. In contrast, the -369 C→G and 309 A→G SNPs in the HBG2 promoter region were correlated to the Benin haplotype. The polymorphisms -396_-391 del HBG2, -369 SNP HBG2 and -271 SNP HBG1 correlated with HbF levels. Hence, we suggest an important role of HBG2 and HBG1 gene polymorphisms on the HbF synthesis.
Resumo:
Glucose enters eukaryotic cells via two types of membrane-associated carrier proteins, the Na+/glucose cotransporters (SGLT) and the facilitative glucose transporters (GLUT). The SGLT family consists of six members. Among them, the SGLT1 and SGLT2 proteins, encoded by the solute carrier genes SLC5A1 and SLC5A2, respectively, are believed to be the most important ones and have been extensively explored in studies focusing on glucose fluxes under both physiological and pathological conditions. This review considers the regulation of the expression of the SGLT promoted by protein kinases and transcription factors, as well as the alterations determined by diets of different compositions and by pathologies such as diabetes. It also considers congenital defects of sugar metabolism caused by aberrant expression of the SGLT1 in glucose-galactose malabsorption and the SGLT2 in familial renal glycosuria. Finally, it covers some pharmacological compounds that are being currently studied focusing on the interest of controlling glycemia by antagonizing SGLT in renal and intestinal tissues.
Resumo:
Our aim was to construct a recombinant adenovirus co-expressing truncated human prostate-specific membrane antigen (tPSMA) and mouse 4-1BBL genes and to determine its effect on dendritic cells (DCs) generated from bone marrow suspensions harvested from C57BL/6 mice for which the effect of 4-1BBL on DCs is not clear, especially during DCs processing tumor-associated antigen. Replication deficient adenovirus AdMaxTM Expression System was used to construct recombinant adenovirus Ad-tPSMA-internal ribosome entry site-mouse 4-1BBL (Ad-tPSMA-IRES-m4-1BBL) and Ad-enhanced green fluorescent protein. Day 7 proliferating DC aggregates generated from C57BL/6 mice were collected as immature DCs and further mature DCs were obtained by lipopolysaccharide activated immature DCs. After DCs were exposed to the recombinant adenovirus with 250 multiplicity of infection, the expression of tPSMA and m4-1BBL proteins were detected by Western blot, and the apoptosis and phenotype of DCs were analyzed by flow cytometry. Cytokines (IL-6 and IL-12) in the supernatant were detected by enzyme-linked immunosorbent assay (ELISA). Proliferation of T cells was detected by allogeneic mixed lymphocyte reactions. The tPSMA and m4-1BBL proteins were expressed correctly. The apoptosis rate of DCs transfected with Ad-tPSMA-IRES-m4-1BBL was 14.6%, lower than that of control DCs. The expression of co-stimulatory molecules [CD80 (81.6 ± 5.4%) and CD86 (80.13 ± 2.81%)] up-regulated in Ad-tPSMA-IRES-m4-1BBL-pulsed DCs, and the level of IL-6 (3960.2 ± 50.54 pg/mL) and IL-12 (249.57 ± 12.51 pg/mL) production in Ad-tPSMA-IRES-m4-1BBL-transduced DCs were significantly higher (P < 0.05) than those in control DCs. Ad-tPSMA-IRES-m4-1BBL induced higher T-cell proliferation (OD450 = 0.614 ± 0.018), indicating that this recombinant adenovirus can effectively enhance the activity of DCs.