260 resultados para Diversas aplicações
Resumo:
Thiosemicarbazones are a class of compounds known by their chemical and biological properties, such as antitumor, antibacterial, antiviral and antiprotozoal activity. Their ability to form chelates with metals has great importance in their biological activities. Their synthesis is very simple, versatile and clean, usually giving high yields. They are largely employed as intermediates, in the synthesis of others compounds. This article is a survey of some of these characteristics showing their great importance to organic and medicinal chemistry.
Resumo:
MIPs are synthetic polymers that are used as biomimetic materials simulating the mechanism verified in natural entities such as antibodies and enzymes. Although MIPs have been successfully used as an outstanding tool for enhancing the selectivity or different analytical approaches, such as separation science and electrochemical and optical sensors, several parameters must be optimized during their synthesis. Therefore, the state-of-the-art of MIP production as well as the different polymerization methods are discussed. The potential selectivity of MIPs in the extraction and separation techniques focusing mainly on environmental, clinical and pharmaceutical samples as applications for analytical purposes is presented.
Resumo:
The aim of this paper is the description of the strategies and advances in the use of MIP in the development of chemical sensors. MIP has been considered an emerging technology, which allows the synthesis of materials that can mimic some highly specific natural receptors such as antibodies and enzymes. In recent years a great number of publications have demonstrated a growth in their use as sensing phases in the construction of sensors . Thus, the MIP technology became very attractive as a promising analytical tool for the development of sensors.
Resumo:
This article gives an overview of exopolysaccharides produced by fungi. The structural characterization of beta-D-(1->3) and beta-D-(1->3, 1->6)- glucans is discussed focusing on different chemical and physical procedures. The industrial applications are also considered mainly from the point of view of human health.
Resumo:
Biocatalysts have innumerous advantages with respect to classical chemical processes, such as high specificity. Lipases (EC 3.1.1.3) are biocatalysts with large application in synthesis and hydrolysis reactions of triacylglycerols. The search for new sources of lipases has been intensified in the last years due to the high cost of microbial and animal lipases, wich restricts their use on an industrial scale. Lipases obtained from the latex of Carica papaya, Carica pentagona, Euphorbia characias, E. wulfenii, known for their proteolytic properties, are a good alternative source. In this review, we describe the well-known sources of vegetal lipases extracted from the latex and present some of their industrial applications.
Resumo:
The goal of this work is to show the use of undoped nanodiamond films as a new material for electrochemical and aerospace applications. Correlation between the applications and physico-chemical features of nano and conventional CVD polycrystalline diamond films are presented. An important and innovative application of these nanodiamonds is organic electrosynthesis, including pharmaceutical and water disinfection products, as well as electroanalytical applications, for example, development of biosensors for detection of glucose, glutamate and dopamine. In aeronautics and space developments, these nanodiamonds could be used as electrodes in rechargable batteries and in tribological investigations.
Resumo:
This paper presents the basic theory of generalized two-dimensional correlation spectroscopy. This method is applicable to various types of spectroscopy, including Infrared, Near Infrared and Raman Spectroscopy and it emphasizes spectral features not readily observable in conventional one-dimensional spectra. Some applications are cited, including work developed in Brazil.
Resumo:
The aromatic six-membered heterocycles having three nitrogen atoms are denominated triazines. Among these heterocycles, isocyanuric chloride and cyanuric chloride are inexpensive and readily available 1,3,5-triazine derivatives, which have been attracting significant attention of organic chemists due to their different kinds of applications, which vary from pharmaceuticals to explosives. This short overview explores their uses in synthetic methods, as chlorinating and oxidating agents and some procedures for their preparation.
Resumo:
The 1,2,3-triazole, known since the end of 19th century, is a very widely used heterocyclic system present in many synthetic substances and commercial pharmaceutical compounds. In fact, 1,2,3-triazoles show several applications in many areas especially as medicines against many diseases like cancer, AIDS, Parkinson and Alzheimer. Nowadays there is a large variety of known methods to obtain these heterocyclic compounds comprising mainly three synthetic routes. Nevertheless, there is no article that gives an objective overview of the synthetic methods for obtaining these kinds of azoheterocycles. This paper presents a brief history of this class of compounds, and a synthetic discussion concerning the main synthetic methods for its preparation, such as cyclization through hydrazones, concerted cycloadditon [2+3] and pseudopericyclic cyclization - and some others of restricted application, but also important. Finally, this paper also provides a brief overview on pharmacological applications of some 1,2,3-triazoles.
Resumo:
Chitin and chitosan are copolymers build from N-acetyl-D-glucosamine and D-glucosamine. The former is widely found in nature and yields the latter on deacetylation. The copolymers are being used for several purposes. Since 1977, when the First International Conference on Chitin and Chitosan was held in Boston, USA, the interest on chitin and chitosan has remarkably increased. This review emphasizes pharmaceutical applications of chitosan and its derivatives, and presents recent advances. Some therapeutical applications of these polymers are also discussed.
Resumo:
The first two papers in this series described the basic theory involved in supercritical fluid chromatography (SFC), how the technique evolved from gas and liquid chromatography and how the instrumentation was developed. Over the last two years, a commercial, dedicated packed-column SFC/MS instrument appeared on the market. The SFC continues to grow in use, with fundamental developments, coupled with a steady rise in the number of industrial users and applications.
Resumo:
Nanomaterials make up an emerging area in Chemistry and in the science of materials. This area constitutes the development of methods for synthesizing nanoscopic particles of a given material used for scientific investigation. Nanomaterials have a wide range of commercial possibilities and technological applications, including their use in analytical chemistry, as well as in electronics, optics, engineering, medicine, devices for liberation of drugs, bioencapsulation, among others. This paper presents a summary about nanoelectrodes, devices built from nanoparticles, which show great potential as electrochemical tools in many different types of analysis. The purpose of this paper is to review the construction methodologies of nanoelectrodes, and to point out their successful applicability in the various fields of immune assays and other analytical procedures with quantitative purposes.
Resumo:
Electrochemical sensors have attracted considerable attention in recent years because they provide data about the chemical state of our surroundings and the dynamics of the chemical transformations in the form a spatially resolved image. Particular interest has been directed to measurements in restricted-volume samples as new technologies enable the fabrication of miniaturized versions of sensors with reproducible characteristics. Taking these aspects into consideration, this review focuses on the use of electrodes of micrometer dimensions to acquire chemical information in microdomains in which concentrations may not be spatially homogeneous. This is possible because microelectrodes allow fast-response measurements with micrometer resolution to be performed. On the other hand, the use of microelectrodes as amperometric sensors presents an inherent drawback owing to the insufficient specificity toward the substrate of interest. Hence, some comments on strategies to enhance the selectivity of amperometric sensors are also made. Finally, recent applications of structurally microscopic electrodes as in vivo sensors are shown, as well as a prospect of the future trend in this field.
Resumo:
By the year 2005 the world biochemical market will reach an estimated $ 100 billion and separation processes are a vital link between lab discoveries and the fulfillment of this commercialization potential. The practical application of aqueous two-phase systems (ATPS) to extraction processes has been exploited for several years for the recovery of biological products. Unfortunately, this has not resulted in an extensive presence of the technique in commercial processes. In this paper a critical overview of the fundamental thermodynamic properties related to formation of aqueous two-phase systems and their application to extraction and purification of bioparticules is presented.
Resumo:
This article surveys a selection of the most recent advances in aziridine synthesis. Novel synthetic methods and new insights into existing methodologies for the selective construction of the title compounds reported in the past decade are discussed in terms of synthetic applicability and environmentally benign conditions. Mechanisms involving stereoselective preparation of structurally diverse aziridines are also presented in order to highlight the most important issues associated with the synthesis of these versatile building blocks.