358 resultados para CYANOBACTERIAL INOCULATION
Resumo:
The A. succeeded, after various experiments, to infect ticks (Amblyoma cajennense) with STEFANSKY bacillus, upon feeding them in rats suffering from murine leprosy, in advanced stages. The A. thinks that will be ease to transfer the sickness from rat to rat by means of inoculation of triturate of infected ticks, as did MARCHOUX with Laelaps echdninus.
Resumo:
The following is a summary of the studies made on the development of Plasmodium gallinaceum sporozoites inoculated into normal chicks. Initially large numbers of laboratory reared Aëdes aegypti were fed on pullets heavily infected with gametocytes. Following the infectious meal the mosquitoes were kept on a diet of sugar and water syrup until the appearance of the sporozoites in the salivary glands. Normal chicks kept in hematophagous arthropod proof cages were then inoculated either by bite of the infected mosquitoes or by subcutaneous inoculations of salivary gland suspensions. By the first method ten mosquitoes fed to engorgement on each normal chick and were then sacrificed immediately afterwards to determine the sporozoite count. By the second method five pairs of salivary glands were dissected out at room temperature, triturated in physiological saline and inoculated subcutaneously. The epidermis and dermis at the site of inoculation were excised from six hours after inoculation to forty eight hours after appearance of the parasites in the blood stream and stretched out on filter paper with the epithelial surface downward. The dermis was then curretted. Slides were made of the scrapings consisting of connective tissue and epithelial cells of the basal layers which were fixed by metyl alcohol and stained with Giemsa for examination under the oil immersion lens. Skin fragments removed from normal chicks and from regions other than the site of inoculation in the infected chicks were used as controls. In these, only the normal histological aspect was ever encountered. In the biopsy made at the earliest period following inoculation clearly defined elongated forms with eight or more chromatin granules arranged in rosary formation were found. The author believes these to be products of the sporozoite evolution. Search for transition stages between these forms and sporozoites is planned in biopsies to be taken immediately following inoculation and at given intervals up to the six hour period. 1.) 6 and 12 hour periods. The bodies referred to above found in the first period in great abundance, apparently in proportion to the large numbers of sporozoites inoculated, were perceptibly reduced in numbers in the second period. 2.) 18 hour period. Only one biopsy was examined. This presented a binuclear body shown in Fig. 1, having a more or less hyaline protoplasm staining an intense blue and a narrow vacuole delimiting the cell boundaries. The two chromatin grains were quite large presenting a clearly defined nuclear texture. 3.) 24 hour period. A similar body to that above (Fig. 2) was seen in the only preparation examined. 4.) 60 hour period. The exoerythrocytic schizonts were found more frequently from this period onward. Several such were found no longer to contain the previously described vacuoles (Fig. 3). 5.) 84 hour period. Cells bearing eight or more schizonts were frequently encountered here. That these are apparently not bodies in process of division may be seen in Fig. 4. From this time onward small violet granules similar to volutine grains appeared constantly in the schizont nucleus and protoplasm. These are definitely not hemozoin. The above observations fell within the incubation period as repeated examinations of the peripheral and visceral blood were negative. Exoery-throcytic parasites also were never encountered in the viscera at this time. Exoerythrocytic schizonts searched for at site of inoculation 1, 24 and 48 hours after the incubation period were present in large number at all three times with apparent tendency to diminish as the number within the blood stream increased. Many of them presented the violet granules mentioned above. The appearance of the chromatin and the intensity of staining of the protoplasm varied from body to body which doubtless corresponds to the evolutionary stage of each. This diversity of aspect may frequently be seen in the parasites of the same host cell (Fig. 5.). These findings lend substance to the theory that the exoerythrocytic forms are the link between the sporozoites and the pigmented parasites of the red blood corpuscles. The explanation of their continued presence in the organism after infection of the blood stream takes place and their presence in cases infected by the inoculation blood does not come within the scope of this work. Large scale observations shortly to be undertaken will be reported in more detail particularly observations on the first evolutionary phases of the sporozoite within the organism of the vertebrate host.
Resumo:
In nests of opossum (Didelphis aurita), localized in palm-trees of the species Attalea indaya Dr., the authors found a new tritatoma, the description of which is being made by Dr. H. LENT. They verified that this triatoma had been naturally infected by Trypanosoma (Schizotrhypanum) cruzy. Two guinea-pigs were subsequently infected by peritoneal inoculation of excrements of this new triatoma. The xenodiagnosis of these guinea-pigs, made with normal nymphas of. T. megistus and T. infestans resulted positive after 25 days. Evidence was obtained of being the opossum (Didelphis) one of the sources infection of the new vector, because several specimens of them were found infected, and also a specimen of D. aurita, which contained trypanosomes with the morphology of T. (S.) cruzy in the peripheral blood.
Resumo:
Arrangement of potassium in the tissues having been mentioned, as well as the rôle it plays in some pathological processes such as suprarenal insufficiency, anaphylactic shock and shock caused by hemorrhage or traumatism, experiences were undertaken to establish the rates of plasma potassium during bacteria infections artificially developed in rabbits by K. pneumoniae. P. aeruginosa and S. enteridits. It was concluded that during the period of the infections, the rate of potassium of the plasma increases almost immediately after the inoculation and stays high when the infections are of a serious or mortal character; the rate continue to increase until the death of the animal occurs. When these infections are not very serious, as in the cases of infections resulting from inoculations of bacteria as not recent and consequently with attenuated virulence K pneumoniae, or P aeruginosa and S enteriditis, to which rabbits are naturally very resistant, the rate of potassium of the plasma increases after an intravenous inoculation of germs according to the septicemic period of the infection; however, when, because of its natural resistance, the animal overcomes the infection, the amount of potassium gradually decreases and finally gets back to the normal rate. The action of cortin on potassium of the plasma was also tested on animals suffering from acute infections caused by K. pneumoniae, which, under normal conditions cause death of the rabbits, nor did it increase the rate of potassium of the plasma when a larger amount of bacteria (300,000,000) was inoculated. However, cortin inoculated several times prevented a higher rate of potassium in the plasma during the development of the infection when a smaller number of bacteria (150,000,000) was inoculated, which quantity, under normal conditions, always causes mortal infections. When cortin is discontinued 20 hours after the inoculation of germs, the infection increases fastly and the animal dies in a very short time. Now, if the injections of cortin continue to be given every hour until the 26th hour instead of only until the 20th hour, the amount of potassium in the plasma very high if the hormones substance is no longer inoculated gradually becomes smaller and finally comes back to the normal rate if the inoculations continue to be made; it will increase again only if the substance is no longer injected; after a few hours the injection is gone, potassium is found to come back to its former rate, and in consequence the animal is perfectly cured of an infection otherwise mortal. ln view of the results thus obtained, it was concluded that, during the development of those infections, the checking of the rate of potassium of the plasma provided a means of controlling the resistance of a body suffering from an infection, that rate increasing when the infection is developing and becoming more severe, or getting back to normal when the infection decreases. The checking of the rate of potassium of the plasma also made known the action of cortin on the tissues, which is found to control the permeability of the cells to potassium. Suggestions were made that potassium of the plasma be thereofre checked during infections in the human body, to make possible proving that the phenomena studied in those animals also take place in the human body. In case this is found to be true, we sould possess an important element to check organic vitality during infections.
Resumo:
In articles, already published, we have proved that the strain V. B. of Brazilian virus, goes through the placenta (Macacus rhesus) (1) and the apparently normal gastro-intestinal tube (1934-1937) (Canis familiaris) (2). Today we present the idea that the Brazilian virus can reach the milk of an animal even when the latter has only the unapparent disease. In former articles (**), we have shown that the goat (Capra hircus) can be an excellent reservoir of Brazilian virus, having the strain V. B. in its blood and presenting a Weil Felix reaction high and in group, with the disease unapparent. When the goats are bred in the laboratory, and even in some foci of the disease, they give a negative Weil Felix, being zero for all the nine strains of Proteus. In the interior of Brazil, in many localities, goats substitute cows, in supplying milk for children and adults, and in some districts goats milk is considered superior to cows milk, possessing marvellous qualities for men, women an children. Having proved, now, that goats milk can contain the virus even when the animal presents nothing clinically, and having also shown that this virus goes through the digestive tube apparently sound, it is easy to understand how infants-in-arms, that is, only a few months old, living in strictly domestic surroundings, can contract the disease; we have many such cases on record. Protocol of the experiments: Goat nº 2, white, January 1948. This animal had been inoculated with the V. B. strain of the Brazilian virus in June 1947, via intra-peritoneal, presenting nothing then, not even a feverish reaction. On that occasion it was not possible to isolate the virus of the blood, although the Weil Felix reaction was positive, high and in group. Now January 17, 1948, seven months later, the same animal was reinoculated with a semple of virus V. B. in the same manner (intra-peritoneal) two days after bringing forth two sturdy kids. The virus V. B. was obtained from guinea-pig n. 7170 whose thermic graph was as follows: Temperatura 38,8 39,1 39,5 39,4 39,8 40,4 40,2 40,1 - + Necropsy Typical lesions. The spleen weighed 5 grammes. With 3c.c. of emulsion from the nervous system of this guinea-pig, we inoculated not only the goat, as also two guineapigs, number 14 and number 5. The following is the thermic graph of one: - Guinea-pig n. 14 38,9 39,1 39,2 39.2 40,7 41,0 40,5 40,4 40,1 - + Typical lesions. Guinea-pig n. 2 presented the following thermic graph after the infective inoculation: - 39,5 39,7 39,7 39,7 39,5 39,3 39,5 39,5 39,5 etc. Clinically, this animal presented nothing unusual, feeding well and suckling the kids normally. The Weil Felix reaction was positive, in group high very similar to the reaction obtained in June 1947, with the first infective inoculation. On the third, fourth, fifth, sixth and seventh day after the infective inoculation, we took milk from the goat and inoculated male guinea-pigs via intra-celular and via intra-peritoneal, giving 5 c.c. to each animal. Guinea-pig n. 4663, inoculated with 5 c.c. of milk, via intra-muscular, taken on the third day of the infectaive inoculation, presented the following thermic graph: - 38.8 (*) 39,1 39,0 39,1 40,1 40,1 40,8 (**) 40,8 Killed Typical deisions (***). The virus V. B. of this goat, circulated naturally in the blood up to the third day, having passed into the milk, producing nothing in the kids, on account of the natural resistance of these animals to the disease. The Weil Felix reaction and that of Widal for the Burcellas suis, abortus and militensis were negative for the goat and the kids. It is remarkable that, even with inoculation of the living virus after a period of seven months we cannot get a real and absolute immunity of sensitive animals. We shall return to this subject later. The hart Mazama simplicicornis may be a carrier of the virus in Brasil. The experimental serum against the virus of Exanthematic neotropical typhus has not protected guinea-pigs.
Resumo:
Since von Hibler gas grangrene has been considered a local infection with systemic symptoms. When we consider some of the symptoms of gas gangrene, those of the central nervous system are in evidence beeing similar to those observed in tetanus and botulism. It is likely therefore that gas gangrene intoxication and the disease caused by it are of neurotoxic nature. With Almeida Cardoso and Araujo Costa we were able to demonstrate lesions in the central nervous system of animals wich had been intoxicated during a short period of time as well in those with intoxication of longer duration. In acute intoxication, after intracreneal inoculation, severe alterations were seen within 20 to 30 minutes in the cells of the spinal cord, specially in motor cells and also in some cells of the posterior cord and spinal bulb. The changes consisted in chromatolysis and picnosis and were more marked in animals intoxicated with Clostridium histolyticum and Cl. perfringens toxines. Myelin sheet was unchanged. in delayed intoxication with greater and repeated dosis lesions of the central nervous system (brain, protuberance, medula ablongate and medula spinal) were observed. They consisted in hyperemia, perivascular hemorrages in white and grey substances, oedema, accumulation of glia cells with enlarged and hyperchromatic nuclei, fragmentation of the myelin sheet and balooning degeneration of the described by Spielmeyer. Such changes were found in the swollen and hemorragic zones and were generally similar to those found in the acute type of Spielmeyer 9acute swelling and liquefation). Other changes found sometimes were agglutination of Nissl's bodies, sinous appearence of the dendritic endings, shruncken cells of Spielmeyer and neuronophagy around "ghost" cells. In short the changes...
Resumo:
In two experiments, 8 Hamsters inoculated with material from yaws lesions (Treponema pertenue), developed skin lesions considered specific by their clinical and histopathological aspects and by the presence of treponemae. These lesions appeared on the scrotumm, testicle, prepuce, anus, tail, muzzle, back and hinders paws (palm surface). In the internal organs no treponemae were found in direct examinations and inoculation of brain, spleen and lymph node. The incubation period was of 35 days for the testicle, 55 days for the scrotum and 107 days for peritoneal cavity inoculation. Positive sub-inoculations were obtained. The serum reactions (Qasserman's and Kahn's) were negative in all 5 tested Hamsters. Out of 4 normal females matched to infected males two developed nasal lesions resulting from direct contact. Apparently the genital lesions hindered copulation. Hamsters are very well suited for an experimental study of yaws.
Resumo:
It is well known that the culture media used in the presumptive diagnosis of suspiciuous colonies from plates inoculated with stools for isolation of enteric organisms do not always correctly indicate the major groups of enterobacteria. In an effort to obtain a medium affording more exact indications, several media (1-9) have been tested. Modifications of some of these media have also been tested with the result that a satisfactory modification of Monteverde's medium was finaly selected. This proved to be most satisfactory, affording, as a result of only one inoculation, a complete series of basic indications. The modification involves changes in the formula, in the method of preparation and in the manner of storage. The formulae are: A. Thymol blue indicator: NaOH 0.1/N .............. 34.4 ml; Thymol blue .............. 1.6 g; Water .................... 65.6 ml. B. Andrade's indicator. C. Urea and sugar solution: Urea ..................... 20 g; Lactose ................... 30 g; Sucrose ................... 30 g; Water .................... 100 ml. The mixture (C.) should be warmed slightly in order to dissolve the ingredients rapidly. Sterilise by filtration (Seitz). Keep stock in refrigeratior. The modification of Monteverde's medium is prepared in two parts. Semi-solid part - Peptone (Difco) 2.0 g; NaCl 0.5 g; Agar 0.5 g; Water 100.0 ml. Boil to dissolve the ingredients. Adjust pH with NaOH to 7.3-7.4. Boil again for precipitation. Filter through cotton. Ad indicators "A" 0.3 ml and "B" 1.0 ml. Sterilise in autoclave 115ºC, 15 minutes in amounts not higher than 200 ml. Just before using, add solution "C" asseptically in amounts of 10 ml to 200 ml of the melted semi-solid medium, maintained at 48-50ºC. Solid part - Peptone (Difco) 1.5 g; Trypticase (BBL) 0.5 g; Agar 2.0 g; Water 100,00 ml. Boil to dissolve the ingredients. Adjust pH with NaOH to 7.3-7.4. Boils again. Filter through cotton. Add indicators "A" 0.3 ml and "B" 1.0 ml; ferrous ammonium sulfate 0.02 g; sodiun thiosulfate 0.02 g. Sterilise in autoclave 115ºC, 15 minutes in amounts not higher than 200 ml. Just before using, add solution "C" asseptically in amounts of 10 ml to 200 ml of the melted solid medium, maintained at 48-50ºC. Final medium - The semi-solid part is dispensed first (tubes about 12 x 120 mm) in 2.5 ml amounts and left to harden at room temperature, in vertical position. The solid part is dispensed over the hardened semi-solid one in amounts from 2.0 ml to 2.5 ml and left to harden in slant position, affording a butt of 12 to 15 mm. The tubes of medium should be subjected to a sterility test in the incubator, overnight. Tubes showing spontaneous gas bubbles (air) should then be discarded. The medium should be stored in the incubator (37ºC), for not more than 2 to 4 days. Storage of the tubes in the ice-box produces the absorption of air which is released as bubbles when the tubes are incubated at 37ºC after inoculation. This fact confirmed the observation of ARCHAMBAULT & McCRADY (10) who worked with liquid media and the aplication of their observation was found to be essential to the proper working conditions of this double-layer medium. Inoculation - The inoculation is made by means of a long straight needle, as is usually done on the triple sugar, but the needel should penetrate only to about half of the height of the semi-solid column. Indol detection - After inoculation, a strip of sterelized filter papaer previously moistened with Ehrlich's reagent, is suspended above the surface of the medium, being held between the cotton plug and the tube. Indications given - In addition to providing a mass of organisms on the slant for serological invetigations, the medium gives the following indications: 1. Acid from lactose and/or sucrose (red, of yellowsh with strains which reduce the indicators). 2. Gas from lactose and/or sucrose (bubbles). 3. H[2]S production, observed on the solid part (black). 4. Motility observed on the semi-solid part (tubidity). 5. Urease production, observed on solid and semi-solid parts (blue). 6. Indol production, observed on the strip of filter paper (red or purplish). Indol production is not observed with indol positive strains which rapidly acidify the surface o the slant, and the use of oxalic acid has proved to give less sensitive reaction (11). Reading of results - In most cases overnight incubation is enough; sometimes the reactions appear within only a few hours of incubation, affording a definitive orientation of the diagnosis. With some cultures it is necessary to observe the medium during 48 hours of incubation. A description showing typical differential reaction follows: Salmonella: Color of the medium unchanged, with blackening of the solid part when H[2]S is positive. The slant tends to alkalinity (greenish of bluish). Gas always absent. Indol negative. Motility positive or negative. Shigella: Color of the medium unchanged at the beginning of incubation period, but acquiring a red color when the strain is late lactose/sucrose positive. Slant tending to alkalinity (greenish or purplish). Indol positive or negative. Motility, gas and H[2]S always negative. Proteus: Color of the medium generally changes entirely to blue or sometimes to green (urease positive delayed), with blackening of solid part when H[2]S is positive. Motility positive of negative. Indol positive. Gas positive or negative. The strains which attack rapidly sucrose may give a yellow-greenish color to the medium. Sometimes the intense blue color of the medium renders difficult the reading of the H[2]S production. Escherichiae and Klebsiellae: Color of the medium red or yellow (acid) with great and rapid production of gas. Motility positive or negative. Indol generally impossible to observe. Paracoli: Those lactose of sucrose positive give the same reaction as Esherichia. Those lactose or sucrose negatives give the same reactions as Salmonellae. Sometimes indol positive and H[2]S negative. Pseudomonas: Color of the medium unchanged. The slant tends to alkalinity. It is impossible to observe motility because there is no growth in the bottom. Alkaligenes: Color of the medium unchanged. The slant tends to alkalinity. The medium does not alter the antigenic properties of the strains and with the mass of organisms on the slant we can make the serologic diagnosis. It is admitted that this medium is somewhat more laborious to prepare than others used for similar purposes. Nevertheless it can give informations generally obtained by two or three other media. Its use represents much saving in time, labor and material, and we suggest it for routine laboratory work in which a quick presumptive preliminary grouping of enteric organisms is needed.
Resumo:
A note on the evolution of cow-pox virus in wild animals of Brazilian fauna. We have tried the sensibility of wild animals of Brazilian fauna to the cow-pox virus. The following specimens were submitted to experiences: Procyon cancrivorus, Hydrochoerus capybara, Cavea aperea, Coendu villosus, Didelphis aurita, Bradypus tridactylus, Euphractus sexcintus, Tamandua tetradactylus, Nasua narica, Dasyprocta aguti and Testudo tabulata. In all these animals, - excepting Bradypus tridactylus - we have obtained an infection with incubation (five days), aspect and duration similar to cow-pox of the laboratorial animals (calf and rabbit). In the Bradypus tridactylus howewer, the incubation was very long. Only after 30 days of inoculation we verified the infection with the formation of vesiculae and postulae.
Resumo:
Transmission of Chagas disease is realized through contamination of ocular conjunctiva, mucosa or skin with infected dejections eliminated by the insect vectors of Schizotrypanum cruzi (Triatoma infestans, Panstrongylus megistus and Rhodnius prolixus). The triatomid bugs live in holes and craks in the walls, in beds, behind trunks, etc. Found in primitive mud huts covered with thatched roofs, and so the human dwellers have many chances to contract the disease, reinfections being reasonably more to expect than a single inoculation. Experimental work reproducing those natural conditions is welcomed as some important features in the pathologic picture of the disease such as the extensive myocardial fibrosis seen in chronic cases are still incompletely known. Microscopic changes were studied in the heart muscle of seven Cebus monkeys infected by S. cruzi. This animal survives the acute stage of the disease and so is particularly suited to experiments of long duration in which several inoculations of S. cruzi are performed. Three different strains of S. cruzi isolated from acute cases of Chagas' disease were employed. One monkey was injected in the skin with infected blood and necropsied after 252 days. Two monkeys were three times, and one, eight times infected in skin, one of them with contaminated blood, and two with contaminated blood and dejections from infected bugs. The necropsies were performed after 35, 95 and 149 days. One monkey was three times inoculated through the intact ocular conjunctiva (one time with infected blood, two times with dejections from infected bugs), and one time through the wounded buccal mucosa, and necropsied after 134 days. Another monkey was six times inoculated, four times through the intact ocular conjunctiva (one time with contaminated blood, three times with dejections from infected bugs) and two times injected in the skin with infected blood, and necropsied after 157 days. Finally, another monkey was nine times inoculated, four times through the intact ocular conjunctiva (one time with infected blood, and three times with dejections from infected bugs), and five times injected in the skin (four times with contaminated blood, and one time with dejections from infected bugs), and necropsied after 233 days. The microscopic picture was uniform presenting, however, considerable individual variations, and was represented by diffuse interstitial myocarditis, frequently more (marked in the right ventricle base of the heart), accompanied by lymphatic stasis. The infiltration consists of macrophages, plasma cells and lymphocytes, the cellular reaction having sometimes a perivascular distribution, involving the auriculo-ventricular system of conduction, endocardium, epicardium and cardiac sympathetic gangliae. The loss of cardiac muscle fibers was always minimal. Leishmanial forms of S. cruzi in myocardial fibers are scanty and, in two cases, absent. Fatty necrosis in the epicardium was noted in two cases. Obliterative changes of medium-sized branches of coronary arteries (hypersensitivity reaction?) and multiple infarcts of the myocardium was found in one instance. The diffuse myocarditis induced by S. cruzi in several species of monkeys of the genus Cebus observed after 233 days (several inoculations) and 252 days (single inoculation) is not associated with disseminated fibrosis such as is reported in chronic cases of Chagas' disease. Definite capacity of reversion is another characteristic of the interstitial myocarditis observed in the series of Cebus monkeys here studied. The impression was gained that repeated inoculation with S. cruzi may influence the myocardial changes differently according to the period between the reinoculations. A short period after the first inoculation is followed by more marked changes, while long periods are accompanied by slight changes, which suggests an active immunisation produced by the first inoculation. More data are required, however before a definite statement is made on this subject considering that individual variations, the natural capacity of reversion of the interstitial myocarditis and the employement of more than a species of Cebus monkeys probably exerts influence also in the results here reported.
Resumo:
Lankesterella alencari n. sp. a Sporozoa that occur in the blood and CNS of the South American frog Leptodactylus acellatus is described. Since the tissue forms of this parasite have been previously reported as belonging to the genus Toxoplasma, we attempted in fection of 2 species of amphibia (Bufo marinus an dLeptodactylus ocellatus) with a Toxoplasma strain of human origen; inoculation was by intraperitoneal injection of parasite-containing ascitic fluid from infected mice. Attempt of experimental inoculation of the parasite found in the CNS of L. ocellatus in a highly susceptible host (mice) was unsuccessful. These results suggest that Toxoplasma does not occur naturally in the amphibia; be related to Toxoplasma is excluded. The following genera of haematozoa found in brazilian amphibia have been considered briedfly: Haemobartonella, Cytamoeba, Dactylosoma, Hepatozoon and Trypanosoma.
Resumo:
The perchloro-soluble mucroptotein fraction was determined in the cells of Ehrlich ascites carcinoma on the 10th and 12th days post-inoculation of the tumor. After 3 days of a single subcutaneous dose of cyclophosphamide (200 mg/kg) the mucoprotein levels were found considerable lower. This difference was highly significant statistically.
Resumo:
Mice infected with Trypanosoma cruzi were challenged with 2x10[raised to the power of 6] cells of sarcoma 180 (ascite tumor) by i.p. route, on day seven post infection. Tumor development was followed by evaluation of weight gain, by measurement of ascitic fluid produced and enumeration of tumor cells in ascitic fluid. Infected mice were more resitant to tumor development as demonstrated by reduction in ascites formation and by reduction in the number of tumor cells in ascitic fluid, at different time intervals after tumor challenge. The number of peritoneal cells exsudated after tumor inoculation was greater in infected mice than in controls. This increased resitance of mice infected with T. cruzi to tumor development could be due to the action of macrophages activated by the infection and by the action of endotoxins absorbed from the gut or produced by the own parasite.
Resumo:
Infective stages of Leishmania (Leishmania) amazonensis, capable of producing amastigote infections in hamster skin, were shown to be present in the experimentally infected sandfly vector Lutzomyia flaviscutellata 15, 25, 40, 49, 70, 96 and 120 hours after the flies had received their infective blood-meal. Similarly, infective stages of Leishmania (L.) chagasi were demonstrated in the experimentally infected vector Lu. longipalpis examined 38, 50, 63, 87, 110, 135, 171 and 221 hours following the infective blood-meal, by the intraperitoneal inoculation of the flagellates into hamsters. The question of whether or not transmission by the bite of the sandfly is dependent on the presence of [quot ]metacyclic[quot ] promastigotes in the mouthparts of the vector is discussed.
Resumo:
In order to investigate the value of the rabbit as an experimental model for Chagas' disease, 72 animals have been inoculated by intraperitoneal and conjunctival route with bloodstream forms, vector-derived metacyclic trypomastigotes and tissue culture trypomastigotes of Trypanosoma cruzi strains Y, CL and Ernane. In 95.6% of the animals trypomastigotes had been detected at the early stages of infection by fresh blood examination. The course of parasitemia at the acute phase was strongly influenced by the parasite strain and route of inoculation. At the chronic phase parasites had been recovered by xenodiagnosis and/or hemoculture in 40% of the examined animals. The xenodiagnosis studies have shown selective interactions between the T. cruzi strains and the four species of vectors used, inducing significant variability in the results. The data herein present are consistent with the parasitological requirements established for a suitable model for chronic Chagas' disease.