231 resultados para (BP)
Resumo:
The objective of this work was to characterize the genetic variability of phytoplasma and Spiroplasma kunkelii isolated from maize plants showing symptoms of stunt collected from different Brazilian geographic regions. A DNA fragment of 500 base pairs (bp) was amplified from the spiralin gene in S. kunkelii and one fragment of 1,200 bp was generated from 16S rDNA gene in phytoplasma. The partial sequences of the spiralin gene showed similarity of 98% among the isolates of S. kunkelii analyzed. These sequences were compared with the sequence of the spiralin gene from other Spiroplasma species deposited in the GenBank, resulting in a similarity varying from 76.9% to 88.1%. The 16S rDNA sequence from the phytoplasma were completely similar within the Brazilian isolates and showed up to 98% of the similarity with sequences already found from other phytoplasmas. A very narrow genetic variability was detected by these gene fragments within phytoplasma and Spiroplasma analyzed. However, other genomic regions with higher polymorphic levels shall be identified in order to better evaluate the genetic diversity within these microorganisms population.
Resumo:
The objective of this work was to evaluate the pathogenicity of 24 Beauveria isolates to Spodoptera frugiperda larvae, and characterize them molecularly through rDNA-ITS sequencing and RAPD markers. Sequencing of rDNA-ITS fragments of 570 bp allowed the identification of isolates as B. bassiana or B. brongniarti by sequence comparison to GenBank. Sixty seven polymorphic RAPD fragments were capable to differentiate 20 among 24 Beauveria isolates, grouping them according to the derived host insect and to pathogenicity against maize fall armyworm larvae. Three RAPD markers were highly associated to the pathogenicity against S. frugiperda, explaining up to 67% of the phenotypic variation. Besides identification and molecular characterization of Beauveria isolates, ITS sequence and RAPD markers proved to be very useful in selecting the isolates potentially effective against S. frugiperda larvae and in monitoring field release of these microorganisms in biocontrol programs.
Resumo:
The objective of this work was to isolate and characterize tannin-tolerant ruminal bacteria from crossbred Holstein x Zebu cows fed a chopped mixture of elephant grass (Pennisetum purpureum), young stems of "angico-vermelho" (Parapiptadenia rigida), and banana tree (Musa sp.) leaves. A total of 117 bacteria strains were isolated from enrichment cultures of rumen microflora in medium containing tannin extracts. Of these, 11 isolates were able to tolerate up to 3 g L-1 of tannins. Classical characterization procedures indicated that different morphological and physiological groups were represented. Restriction fragments profiles using Alu1 and Taq1 of 1,450 bp PCR products from the 16S rRNA gene grouped the 11 isolates into types I to VI. Sequencing of 16S rRNA PCR products was used for identification. From the 11 strains studied, seven were not identifiable by the methods used in this work, two were strains of Butyrivibrio fibrisolvens, and two of Streptococcus bovis.
Resumo:
RESUMOO trabalho objetivou determinar a produção de massa da matéria seca das partes da planta e o acúmulo total de macro e micronutrientes pelas mudas enxertadas de cultivares de pereira em condições hidropônicas. Utilizou-se do delineamento experimental inteiramente casualizado, em esquema fatorial 3x 3, com quatro repetições. Os fatores emestudo foram: três cultivares (Triunfo, Tenra e Cascatense) e três tipos de enxertia (borbulhia em placa - BP; borbulhia em ‘T’ invertido – BT, e garfagem de fenda cheia –GF). Avaliaram-se a massa seca da parte área, do sistema radicular e total, e o acúmulo total de nutrientes. O método de enxertia de garfagem de fenda cheia e as cultivares Tenra e Triunfo são indicados para a produção de mudas de pereira em sistema hidropônico. No acúmulo de nutrientes nas mudas de pereira, independentemente da cultivar, estabeleceu-se a seguinte ordem para macronutrientes: N>Mg>K>Ca>P>S; e para os micronutrientes: Fe>Mn>B>Zn>Cu.
Resumo:
The sambaquis are archaeological sites with remains of pre-historical Brazilian civilizations. They look like small hills containing different kinds of shells, animal and fish bones, small artifacts and even human skeletons. Since the sambaqui sites in the Rio de Janeiro state are younger than 6000 years, the applicability of CO2 absorption on Carbo-Sorb® and 14C determination by counting on a low background liquid scintillation counter was tested. The International Atomic Energy Agency standard reference material IAEA-C2 was used in order to standardize the method. Nine sambaqui samples from five different archaeological sites found in the Rio de Janeiro state were analyzed and 14C ages between 2100 and 3600 years BP were observed. The same samples were sent to the 14C Laboratory of the Centro de Energia Nuclear na Agricultura (CENA/USP) where similar results were obtained.
Resumo:
A reversed-phase HPLC method was developed and validated to separate and simultaneously quantify the association of betamethasone sodium phosphate (BP) and betamethasone dipropionate (BD) in injectable suspensions. Chromatographic conditions were ternary gradient elution at 1.6 mL/min on a C18 column with 254 nm. The linearity of the method was established in the range 120 to 280 mg/mL BD, and 48 to 112 mg/mL BP. The RSD of intermediate precision of the method was <1% and recoveries were 99-101% for both drugs. The method proved selective, linear, precise, accurate and robust for quantifying BP and BD in commercial injectable suspensions.
Resumo:
Severe epidemics of leaf blotch and black leaf spot of oat (Avena sativa) caused by Drechslera avenae and Drechslera sp., respectively, are frequently observed in the State of Paraná, Brazil. Although some morphological differences between the isolates causing two different symptoms were noticed, the genetic relationship between them was not clear. Twenty-four isolates of D. avenae and Drechslera sp, collected between 1996-98, were assessed for the genetic variability by molecular and pathogenic analyses. The amplification products using primer pair ITS4/ITS5 showed a fragment length of approximately 600 bp for all the isolates except for one black spot isolate, where the fragment length was approximately 550 bp. Restriction enzymes Hinf I and Taq I, that cut in the ITS region, produced similar restriction patterns for all the isolates, whereas four others produced variable restriction patterns. RAPD analysis also showed distinctive patterns for some isolates. No clear difference between the black spot and the leaf blotch isolates was observed either by the molecular or by the pathogenicity analysis. Nonetheless, the rDNA analysis suggests that Drechslera probably comprises at least three distinct taxa. The results indicate that the difference observed between the isolates originating from two types of symptoms is due to intra-specific variants of D. avenae.
Resumo:
Apple stem grooving virus (ASGV) is one of the most important viruses infecting fruit trees. This study aimed at the molecular characterization of ASGV infecting apple (Malus domestica) plants in Santa Catarina (SC). RNA extracted from plants infected with isolate UV01 was used as a template for RT-PCR using specific primers. An amplified DNA fragment of 755 bp was sequenced. The coat protein gene of ASGV isolate UV01 contains 714 nucleotides, coding for a protein of 237 amino acids with a predicted Mr of approximately 27 kDa. The nucleotide and the deduced amino acid sequences of the coat protein gene showed identities of 90.9% and 97.9%, respectively, with a Japanese isolate of ASGV. Very high amino acid homologies (98.7%) were also found with Citrus tatter leaf capillovirus (CTLV), a very close relative of ASGV. These results indicate low coat protein gene variability among Capillovirus isolates from distinct regions. In a restricted survey, mother stocks in orchards and plants introduced into the country for large scale fruit production were indexed and shown to be infected by ASGV (20%), usually in a complex with other (latent) apple viruses (80%).
Resumo:
The fungus Stemphylium solani causes leaf blight of tomato (Lycopersicon esculentum) in Brazil. In recent years, severe epidemics of a new leaf blight of cotton (Gossipium hyrsutum) caused by S. solani occurred in three major cotton-growing Brazilian states (PR, MT and GO). Molecular analysis was performed to assess the genetic diversity among the S. solani isolates from cotton, and to verify their relationship with representative S. solani isolates from tomato. Random amplified polymorphic DNA (RAPD) markers and internal transcribed spacers of ribosomal DNA (rDNA) were used to compare 33 monosporic isolates of S. solani (28 from cotton and five from tomato). An isolate of Alternaria macrospora from cotton was also used for comparison. RAPD analysis showed the presence of polymorphism between the genera and the species. The A. macrospora and the S. solani isolates from cotton and tomato were distinct from each other, and fell into separate groups. Variation by geographic region was observed for the tomato isolates but not for the cotton isolates. Amplifications of the ITS region using the primer pair ITS4/ITS5 resulted in a single PCR product of approximately 600 bp for all the isolates. Similarly, when amplified fragments were digested with eight restriction enzymes, identical banding patterns were observed for all the isolates. Hence, rDNA analysis revealed no inter-generic or intra-specific variation. The genetic difference observed between the cotton and the tomato isolates provides evidence that S. solani attacking cotton in Brazil belongs to a distinct genotype.
Resumo:
Plants of Senna occidentalis (sin. Cassia occidentalis) with mosaic symptoms were collected near a soybean (Glycine max) field where some plants exhibited symptoms of mosaic and blistering. A preliminary examination of leaf tissue from diseased S. occidentalis by electron microscopy revealed the presence of pinwheel inclusions as well as long flexuous particles, indicating the presence of a potyvirus. Host range, serology, and amino acid sequence from this potyvirus were similar to those from other Brazilian isolates of Soybean mosaic virus (SMV). The 3'- terminal region of the genomic RNA was cloned and a cDNA sequence of 1.9 kb upstream of the poly (A) tract was determined. The sequence contains a single open reading frame and a 3'- non-translated region (NTR) of 259 bp. The nucleotide sequence of the CP gene of SMV-Soc was 98% identical to that of Brazilian isolates SMV-B, SMV-L, and SMV-FT10. The percentage of nucleotide identity of their 3'-NTR's was 91, 98, and 99% in relation to SMV-L, SMV-B, and SMV-FT10, respectively. In contrast to other Brazilian SMV isolates studied, SMV-Soc was able to infect sunflower (Helianthus annuus). Based on these results, the S. occidentalis isolate was identified as a new strain of SMV belonging to the SMV strain, group G5 and was named SMV-Soc. This is the first report of naturaly occurring SMV infecting plants of S. occidentalis in Brazil, adding this weed as a new source of SMV in the field.
Resumo:
An isolate of Grapevine virus B (GVB), obtained by indexing Vitis labrusca and V. vinifera grapevines on the indicator LN33, was transmitted mechanically to several Nicotiana species. The virus was partially purified from N. cavicola and the coat protein estimated at 23 kDa by SDS-PAGE. In negatively stained leaf extracts of experimentally inoculated N. cavicola and N. occidentalis, flexuous particles with cross banding were observed, predominantly measuring 750-770 x 12 nm, with a modal length of 760 nm. Decoration indicated a clear, positive reaction against AS-GVB. In DAS-ELISA, GVB was detected in N. cavicola and grapevine extracts, and Western blots showed homologous and cross reaction of GVB and GVA antisera with GVB coat protein. Using specific primers for GVB, a fragment of 594 bp, comprising the coat protein gene coding for 197 amino acids, was amplified by RT-PCR with viral RNA extracted from GVB-infected N. occidentalis. The nucleotide and the deduced amino acid sequences of the coat protein gene showed high identities with Italian and Japanese isolates of GVB.
Resumo:
A citrus tatter leaf isolate (CTLV-Cl) of Apple stem grooving virus (ASGV) has been found to be associated with a fruit rind intumescence in Cleopatra mandarin (Citrus reshni) in Limeira (SP). The CTLV-Cl was mechanically transmitted to the main experimental herbaceous hosts of CTLV. Chenopodium quinoa and C. amaranticolor reacted with local lesions and systemic symptoms while other test plants reacted somewhat differently than what is reported for CTLV. A pair of primers designed for specific detection of ASGV and CTLV amplified the expected 801 bp fragment from the CTLV-Cl-infected plants. Typical capillovirus-like particles were observed by the electron microscope in experimentally infected C. quinoa and C. amaranticolor leaves.
Resumo:
Macrophomina phaseolina has been considered one of the most prevalent soybean (Glycine max) pathogens in Brazil. No genetic resistance has been determined in soybean and very little is known about the genetic diversity of this pathogen in tropical and sub-tropical regions. Fifty-five isolates from soybean roots were collected in different regions and analyzed through RAPD for genetic diversity. The UPGMA cluster analysis for 74 loci scored permitted identification of three divergent groups with an average similarity of 99%, 92% and 88%, respectively. The three groups corresponded to 5.45%, 59.95% and 34.6%, respectively of all isolates used. A single plant had three different haplotypes, while 10.9% of the analyzed plants had two different haplotypes. In another study the genetic similarity was evaluated among isolates from different hosts [soybean, sorghum (Sorghum bicolor), sunflower (Helianthus annuus), cowpea (Vigna unguiculata), corn (Zea mays) and wheat (Triticum aestivum)] as well as two soil samples from native areas. Results showed that more divergent isolates originated from areas with a single crop. Isolates from areas with crop rotation were less divergent, showing high similarity values and consequently formed the largest group. Amplification of the ITS region using primers ITS1 and ITS4 produced only one DNA fragment of 620 bp. None of the isolates were differentiated through PCR-RFLP. Our results demonstrated genetic variability among Brazilian isolates of M. phaseolina and showed that one single root can harbor more than one haplotype. Moreover, cultivation with crop rotation tends to induce less specialization of the pathogen isolates. Knowledge of this variation may be useful in screening soybean genotypes for resistance to charcoal rot.
Resumo:
The aim of this study was to identify isolates of Rhizoctonia solani causing hypocotyl rot and foliar blight in soybean (Glycine max) in Brazil by the nucleotide sequences of ITS-5.8S regions of rDNA. The 5.8S rDNA gene sequence (155 bp) was highly conserved among all isolates but differences in length and nucleotide sequence of the ITS1 and ITS2 regions were observed between soybean isolates and AG testers. The similarity of the nucleotide sequence among AG-1 IA isolates, causing foliar blight, was 95.1-100% and 98.5-100% in the ITS1 and ITS2 regions, respectively. The nucleotide sequence similarity among subgroups IA, IB and IC ranged from 84.3 to 89% in ITS1 and from 93.3 to 95.6% in ITS2. Nucleotide sequence similarity of 99.1% and 99.3-100% for ITS1 and ITS2, respectively, was observed between AG-4 soybean isolates causing hypocotyl rots and the AG-4 HGI tester. The similarity of the nucleotide sequence of the ITS-5.8S rDNA region confirmed that the R. solani Brazilian isolates causing foliar blight are AG-1 IA and isolates causing hypocotyl rot symptoms are AG-4 HGI. The ITS-5.8S rDNA sequence was not determinant for the identification of the AG-2-2 IIIB R. solani soybean isolate.
Resumo:
The objective of this research was to develop a primer for a polymerase chain reaction specific for Xylella fastidiosa strains that cause Pierce's Disease (PD) in grapes (Vitis vinifera). The DNA amplification of 23 different strains of X. fastidiosa, using a set of primers REP1-R (5'-IIIICGICGIATCCIGGC-3') and REP 2 (5'-ICGICTTATCIGGCCTAC-3') using the following program: 94 ºC/2 min; 35 X (94 ºC/1 min, 45 ºC/1 min and 72 ºC/1 min and 30 s) 72 ºC/5 min, produced a fragment of 630 bp that differentiated the strains that cause disease in grapes from the other strains. However, REP banding patterns could not be considered reliable for detection because the REP1-R and REP 2 primers correspond to repetitive sequences, which are found throughout the bacterial genome. The amplified product of 630 bp was eluted from the agarose gel, purified and sequenced. The nucleotide sequence information was used to identify and synthesize an specific oligonucleotide for X. fastidiosa strains that cause Pierce's Disease denominated Xf-1 (5'-CGGGGGTGTAGGAGGGGTTGT-3') which was used jointly with the REP-2 primer at the following conditions: 94 ºC/2 min; 35 X (94 ºC/1 min, 62 ºC/1 min; 72 ºC/1 min and 30 s) 72 ºC/10 min. The DNAs isolated from strains of X. fastidiosa from other hosts [almond (Prumus amygdalus), citrus (Citrus spp.), coffee (Coffea arabica), elm (Ulmus americana), mulberry (Morus rubra), oak (Quercus rubra), periwinkle wilt (Catharantus roseus), plums (Prunus salicina) and ragweed (Ambrosia artemisiifolia)] and also from other Gram negative and positive bacteria were submitted to amplification with a pair of primers Xf-1/REP 2 to verify its specificity. A fragment, about 350 bp, was amplified only when the DNA from strains of X. fastidiosa isolated from grapes was employed.