19 resultados para multiscale elasticity
Resumo:
Currently, the standards that deal with the determination of the properties of rigidity and strength for structural round timber elements do not take in consideration in their calculations and mathematical models the influence of the existing irregularities in the geometry of these elements. This study has as objective to determine the effective value of the modulus of longitudinal elasticity for structural round timber pieces of the Eucalyptus citriodora genus by a technique of optimization allied to the Inverse Analysis Method, to the Finite Element Method and the Least Square Method.
Resumo:
Round timber has great use in civil construction, performing the function of beams, columns, foundations, poles for power distribution among others, with the advantage of not being processed, such as lumber. The structural design of round timber requires determining the elastic properties, mainly the modulus of elasticity. The Brazilian standards responsible for the stiffness and strength determination of round timber are in effect for over twenty years with no technical review. Round timber, for generally present an axis with non-zero curvature according to the position of the element in the bending test, may exhibit different values of modulus of elasticity. This study aims to analyze the position effect of Eucalyptus grandis round timber on the flexural modulus of elasticity. The three-point bending test was evaluated in two different positions based on the longitudinal rotation of the round timber element. The results revealed that at least two different positions of the round timber element are desired to obtain significant modulus of elasticity.
Resumo:
This study aims to present an alternative calculation methodology based on the Least Squares Method for determining the modulus of elasticity in bending wooden beams of structural dimensions. The equations developed require knowledge of three or five points measured in displacements along the piece, allowing greater reliability on the response variable, using the statistical bending test at three points and non-destructively, resulting from imposition of measures from small displacements L/300 and L/200, the largest being stipulated by the Brazilian norm NBR 7190:1997. The woods tested were Angico, Cumaru, Garapa and Jatoba. Besides obtaining the modulus of elasticity through the alternative methodology proposed, these were also obtained employing the Brazilian norm NBR 7190:1997, adapted to the condition of non-destructive testing (small displacements) and for pieces of structural dimensions. The results of the modulus of elasticity of the four species of wood according to both calculation approaches used proved to be equivalent, implying the good approximation provided by the methodology of calculation adapted from the Brazilian norm.
Resumo:
This paper presents an HP-Adaptive Procedure with Hierarchical formulation for the Boundary Element Method in 2-D Elasticity problems. Firstly, H, P and HP formulations are defined. Then, the hierarchical concept, which allows a substantial reduction in the dimension of equation system, is introduced. The error estimator used is based on the residual computation over each node inside an element. Finally, the HP strategy is defined and applied to two examples.
Resumo:
In order to evaluate age related changes of the elastic fiber system in the interfoveolar ligament, we studied the deep inguinal ring from 33 male cadavers aged from stillborn to 76 years. Selective and alternated staining methods for elastic fibers were performed to differentiate oxytalan, elaunin, and mature elastic fibers. We confirmed quantitative changes of the elastic fiber system with aging. There was a significant and progressive reduction of the oxytalan fibers (responsible for tissue resistance) and a significant increment in the mature elastic and elaunin fibers (responsible for tissue elasticity). Furthermore, there were structural changes in the thickness, shortness and curling of these mature elastic fibers. These changes induced loss of the elastic fiber function and loss of the interfoveolar ligament compliance. These factors predispose individuals to the development of indirect inguinal hernias that frequently emerge in adults and aged individuals, especially above the fifth decade.
Resumo:
PURPOSE: Our previous studies demonstrated structural and quantitative age-related changes of the elastic fibers in transversalis fascia, which may play a role in inguinal hernia formation. To verify whether there were differences in the extracellular matrix between direct and indirect inguinal hernia, we studied the amount of collagen and elastic fibers in the transversalis fascia of 36 male patients with indirect inguinal hernia and 21 with direct inguinal hernia. MATERIAL AND METHODS: Transversalis fascia fragments were obtained during surgical intervention and underwent histological quantitative analysis of collagen by colorimetry and analysis of elastic fibers by histomorphometry. RESULTS: We demonstrated significantly lower amounts of collagen and higher amounts of elastic fibers in transversalis fascia from patients with direct inguinal hernia compared to indirect inguinal hernia patients. The transversalis fascia from direct inguinal hernia patients showed structural changes of the mature and elaunin elastic fibers, which are responsible for elasticity, and lower density of oxytalan elastic fibers, which are responsible for resistance. These changes promoted loss of resiliency of the transversalis fascia. CONCLUSION: These results improve our understanding of the participation of the extracellular matrix in the genesis of direct inguinal hernia, suggesting a relationship with genetic defects of the elastic fiber and collagen synthesis.
Resumo:
OBJECTIVE: To evaluate elastic properties of conduit arteries in asymptomatic patients who have severe chronic aortic regurgitation. METHODS: Twelve healthy volunteers aged 30±1 years (control group) and 14 asymptomatic patients with severe aortic regurgitation aged 29±2 years and left ventricular ejection fraction of 0.61±0.02 (radioisotope ventriculography) were studied. High-resolution ultrasonography was performed to measure the systolic and diastolic diameters of the common carotid artery. Simultaneous measurement of blood pressure enabled the calculation of arterial compliance and distensibility. RESULTS: No differences were observed between patients with aortic regurgitation and the control group concerning age, sex, body surface, and mean blood pressure. Pulse pressure was significantly higher in the aortic regurgitation group compared with that in the control group (78±3 versus 48±1mmHg, P<0.01). Arterial compliance and distensibility were significantly greater in the aortic regurgitation group compared with that in the control group (11.0±0.8 versus 8.1±0.7 10-10 N-1 m4, P=0.01 e and 39.3±2.6 versus 31.1±2.0 10-6 N-1 m², P=0.02, respectively). CONCLUSION: Patients with chronic aortic regurgitation have increased arterial distensibility. Greater vascular compliance, to lessen the impact of systolic volume ejected into conduit arteries, represents a compensatory mechanism in left ventricular and arterial system coupling.
Resumo:
Edible films are thin materials based on biopolymers and food additives. The aim of this work is a review on the application of dynamic mechanical analysis in edible film technology. After a brief review of the linear visco-elasticity theory, a description of some practical aspects related to dynamic mechanical analysis, such as sample fixation and sample dehydration during analysis and types and modes of tests are presented. Thus, the use of temperature scanning analysis for glass transition and for plasticizer-biopolymer compatibility studies and frequency scanning tests, less common in edible film technology, are critically reviewed.
Resumo:
The objective of this study was to obtain estimates of longitudinal growth stresses in standing trees of the Eucalyptus dunnii Maiden at eight, thirteen, fifteen and nineteen years of age and to determine their relationships with wood characteristics. The longitudinal growth stresses were indirectly measured by the "CIRAD-Forêt" method and estimated from both the dynamic modulus of elasticity and the modulus of elasticity in tension parallel to the grain. The longitudinal residual strain (LRS) and the estimates of the longitudinal growth stresses tended to increase with the age of the material. The LRS correlated positively and significantly with all the growth stresses estimates. The largestes magnitudes were at 13, 15 and 19 years of age. The basic density presented high, positive and significant correlations with the dynamic modulus of elasticity, estimated in the longitudinal direction, for wood saturated and at 12% moisture content, for all the ages assessed. All the growth stresses estimates presented high, positive and significant correlations between themselves.
Resumo:
This work deals with an hybrid PID+fuzzy logic controller applied to control the machine tool biaxial table motions. The non-linear model includes backlash and the axis elasticity. Two PID controllers do the primary table control. A third PID+fuzzy controller has a cross coupled structure whose function is to minimise the trajectory contour errors. Once with the three PID controllers tuned, the system is simulated with and without the third controller. The responses results are plotted and compared to analyse the effectiveness of this hybrid controller over the system. They show that the proposed methodology reduces the contour error in a proportion of 70:1.
Resumo:
An early experiment found that a square rubber sheet under symmetric biaxial loading may not remain square. This curious result has been one of the most instructive examples in finite elasticity. Here thermodynamic considerations are used to analyze this instability.
Resumo:
Water relations of the tree species Myrsine umbellata Mart. ex A. DC., Dodonaea viscosa Jacq. and Erythroxylum argentinum O. E. Schulz, growing on a rock outcrop in the "Parque Estadual de Itapuã" (RS), were studied. Environmental (precipitation, temperature, soil water) and plant (water potential, vapor pressure deficit, stomatal conductance, transpiration, leaf specific hydraulic conductance, osmotic potential and cell wall elasticity) parameters were collected in five periods and pooled into two sets of data: wet and dry periods. Myrsine umbellata showed great stability of the plant parameters, including the maintenance of high pre-dawn (psiwpd) and mid-day (psiwmd) water potentials in the dry period (-0.48 and -1.12 MPa, respectively), suggesting the presence of a deep root system. Dodonaea viscosa and E. argentinum reached lower psiwpd (-1.41 and -1.97 MPa, respectively) and a greater degree of stomatal closure in the dry period, suggesting a shallower root system. Differential exposure to soil drought was also corroborated by differential drought effects on the whole-plant leaf specific hydraulic conductance (Gt). Correlation analysis pointed to weak correlations between psiwpd and g s. Erythroxylum argentinum was the only species to show osmotic adjustment in response to drought. It is suggested that M. umbellata has low tolerance to water deficits, adopting an avoidance behavior. The much lower values of psiw reached by D. viscosa and E. argentinum suggest a greater tolerance to drought by these species.
Resumo:
Connexin43 (Cx43), the predominant gap junction protein of muscle cells in vessels and heart, is involved in the control of cell-to-cell communication and is thought to modulate the contractility of the vascular wall and the electrical coupling of cardiac myocytes. We have investigated the effects of arterial hypertension on the expression of Cx43 in aorta and heart in three different models of experimental hypertension. Rats were made hypertensive either by clipping one renal artery (two kidney, one-clip renal (2K,1C) model) by administration of deoxycorticosterone and salt (DOCA-salt model) or by inhibiting nitric oxide synthase with NG-nitro-L-arginine methyl ester (L-NAME model). After 4 weeks, rats of the three models showed a similar increase in intra-arterial mean blood pressure and in the thickness of the walls of both aorta and heart. Analysis of heart mRNA demonstrated no change in Cx43 expression in the three models compared to their respective controls. The same 2K,1C and DOCA-salt hypertensive animals expressed twice more Cx43 in aorta, and the 2K,1C rats showed an increase in arterial distensibility. In contrast, the aortae of L-NAME hypertensive rats were characterized by a 50% decrease in Cx43 and the carotid arteries did not show increased distensibility. Western blot analysis indicated that Cx43 was more phosphorylated in the aortae of 2K,1C rats than in those of L-NAME or control rats, indicating a differential regulation of aortic Cx43 in different models of hypertension. The data suggest that localized mechanical forces induced by hypertension affect Cx43 expression and that the cell-to-cell communication mediated by Cx43 channels may contribute to regulating the elasticity of the vascular wall.
Resumo:
Cardiac structures, function, and myocardial contractility are affected by food restriction (FR). There are few experiments associating undernutrition with hypertension. The aim of the present study was to analyze the effects of FR on the cardiac response to hypertension in a genetic model of hypertension, the spontaneously hypertensive rat (SHR). Five-month-old SHR were fed a control or a calorie-restricted diet for 90 days. Global left ventricle (LV) systolic function was evaluated in vivo by transthoracic echocardiogram and myocardial contractility and diastolic function were assessed in vitro in an isovolumetrically beating isolated heart (Langendorff preparation). FR reduced LV systolic function (control (mean ± SD): 58.9 ± 8.2; FR: 50.8 ± 4.8%, N = 14, P < 0.05). Myocardial contractility was preserved when assessed by the +dP/dt (control: 3493 ± 379; FR: 3555 ± 211 mmHg/s, P > 0.05), and developed pressure (in vitro) at diastolic pressure of zero (control: 152 ± 16; FR: 149 ± 15 mmHg, N = 9, P > 0.05) and 25 mmHg (control: 155 ± 9; FR: 150 ± 10 mmHg, N = 9, P > 0.05). FR also induced eccentric ventricular remodeling, and reduced myocardial elasticity (control: 10.9 ± 1.6; FR: 9.2 ± 0.9%, N = 9, P < 0.05) and LV compliance (control: 82.6 ± 16.5; FR: 68.2 ± 9.1%, N = 9, P < 0.05). We conclude that FR causes systolic ventricular dysfunction without in vitro change in myocardial contractility and diastolic dysfunction probably due to a reduction in myocardial elasticity.
Resumo:
Marfan syndrome (MS) is a dominant autosomal disease caused by mutations in chromosome 15, the locus controlling fibrillin 1 synthesis, and may exhibit skeletal, ocular, cardiovascular, and other manifestations. Pulse wave velocity (PWV) is used to measure arterial elasticity and stiffness and is related to the elastic properties of the vascular wall. Since the practice of exercise is limited in MS patients, it was of interest to analyze the acute effect of submaximal exercise on aortic distensibility using PWV and other hemodynamic variables in patients with MS with either mild or no aortic dilatation. PWV and physiological variables were evaluated before and after submaximal exercise in 33 patients with MS and 18 controls. PWV was 8.51 ± 0.58 at rest and 9.10 ± 0.63 m/s at the end of exercise (P = 0.002) in the group with MS and 8.07 ± 0.35 and 8.98 ± 0.56 m/s in the control group, respectively (P = 0.004). Comparative group analysis regarding PWV at rest and at the end of exercise revealed no statistically significant differences. The same was true for the group that used β-blockers and the one that did not. The final heart rate was 10% higher in the control group than in the MS group (P = 0.01). Final systolic arterial pressure was higher in the control group (P = 0.02). PWV in MS patients with mild or no aortic dilatation did not differ from the control group after submaximal effort.