101 resultados para mean pondered diameter
Resumo:
This study characterized morphologically Trichodina heterodentata Duncan, 1977 from cultivated fingerlings of "pirarucu" Arapaima gigas in Peru. Body and gill smears were air-dried at room temperature, impregnated with silver nitrate and/or stained with gomori trichromic. Prevalence was 100%. Trichodina heterodentata was considered a medium-sized trichodinid with mean body diameter of 56.0+ 5.25 (47.3-76.0) μm, denticulate ring 28.21± 2.71 (20-34.7) μm, adhesive disc 45.7±3.8 (37.1-57.3) μm diameter and number of denticles of 20.7± 2.6 (12-24). The present study reports not only the first occurrence of T. heterodentata in Peru but also the first record of this trichodinid infesting A. gigas. Camparative tables of all reports of T. heterodentata are also presented.
Resumo:
OBJECTIVE: To analyze the relationship between myocardial bridges and the anterior interventricular branch (anterior descending) of the left coronary artery. METHODS: The study was carried out with postmortem material, and methods of dissection and observation were used. We assessed the perimeter of the anterior interventricular branch of the left coronary artery using a pachymeter, calculated its proximal and distal diameters in relation to the myocardial bridge, and also its diameter under the myocardial bridge in 30 hearts. We also observed the position of the myocardial bridge in relation to the origin of the anterior interventricular branch. RESULTS: The diameters of the anterior interventricular branch were as follows: the mean proximal diameter was 2.76±0.76 mm; the mean diameter under the myocardial bridge was 2.08±0.54 mm; and the mean distal diameter was 1.98±0.59 mm. In 33.33% (10/30) of the cases, the diameter of the anterior interventricular branch under the myocardial bridge was lower than the diameter of the anterior interventricular branch distal to the myocardial bridge. In 3.33% (1/30) of the cases, an atherosclerotic plaque was found in the segment under the myocardial bridge. The myocardial bridge was located in the middle third of the anterior interventricular branch in 86.66% (26/30) of the cases. CONCLUSION: Myocardial bridges are more frequently found in the middle third of the anterior interventricular branch of the left coronary artery. The diameter of the anterior interventricular branch of the left coronary artery under the myocardial bridge may be smaller than after the bridge. Myocardial bridges may not provide protection against the formation of atherosclerotic plaque inside the anterior interventricular branch of the left coronary artery.
Resumo:
The spatial variability of soils under a same management system is differentiated, as expressed in the properties. The spatial variability of aggregate stability of a eutrophic Red Latosol (ERL) and a dystrophic Red Latosol (DRL) under sugarcane was characterized. Samples were collected in a regular 10 m grid, in the layers 0.0-0.2 and 0.2-0.4 m, with 100 points per area, and the following properties were determined: geometric mean diameter (GMD) of aggregates, mean weight diameter (MWD) of aggregates, percent of aggregates in the > 2.0 mm class and organic matter (OM) content. The eutrophic Red Latosol (ERL) had a higher aggregate stability thn the dystrophic Red Latosol (DRL), which may be attributed to the higher clay and OM content and the gibbsitic mineralogy of this soil class. The differentiated evolution of the studied Oxisols explains the wider range and lower variation coefficient and variability, for all properties studied in the eutrophic Red Latosol.
Resumo:
In the areas where irrigated rice is grown in the south of Brazil, few studies have been carried out to investigate the spatial variability structure of soil properties and to establish new forms of soil management as well as determine soil corrective and fertilizer applications. In this sense, this study had the objective of evaluating the spatial variability of chemical, physical and biological soil properties in a lowland area under irrigated rice cultivation in the conventional till system. For this purpose, a 10 x 10 m grid of 100 points was established, in an experimental field of the Embrapa Clima Temperado, in the County of Capão do Leão, State of Rio Grande do Sul. The spatial variability structure was evaluated by geostatistical tools and the number of subsamples required to represent each soil property in future studies was calculated using classical statistics. Results showed that the spatial variability structure of sand, silt, SMP index, cation exchange capacity (pH 7.0), Al3+ and total N properties could be detected by geostatistical analysis. A pure nugget effect was observed for the nutrients K, S and B, as well as macroporosity, mean weighted diameter of aggregates, and soil water storage. The cross validation procedure, based on linear regression and the determination coefficient, was more efficient to evaluate the quality of the adjusted mathematical model than the degree of spatial dependence. It was also concluded that the combination of classical with geostatistics can in many cases simplify the soil sampling process without losing information quality.
Resumo:
The influence of relief forms has been studied by several authors and explains the variability in the soil attributes of a landscape. Soil physical attributes depend on relief forms, and their assessment is important in mechanized agricultural systems, such as of sugarcane. This study aimed to characterize the spatial variability in the physical soil attributes and their relationship to the hillslope curvatures in an Alfisol developed from sandstone and growing sugarcane. Grids of 100 x 100 m were delimited in a convex and a concave area. The grids had a regular spacing of 10 x 10 m, and the crossing points of this spacing determined a total of 121 georeferenced sampling points. Samples were collected to determine the physical attributes related to soil aggregates, porosity, bulk density, resistance to penetration and moisture within the 0-0.2 and 0.2-0.4 m depth. Statistical analyses, geostatistics and Student's t-tests were performed with the means of the areas. All attributes, except aggregates > 2 mm in the 0-0.2 m depth and macroporosity at both depths, showed significant differences between the hillslope curvatures. The convex area showed the highest values of the mean weighted diameter, mean geometric diameter, aggregates > 2 mm, 1-2 mm aggregates, total porosity and moisture and lower values of bulk density and resistance to penetration in both depth compared to the concave area. The number of soil attributes with greater spatial variability was higher in the concave area.
Resumo:
Laser diffraction (LD) provides detailed analysis of particle size distribution. Its application to testing the stability of soil aggregates can assist studies on the aggregation of soils with contrasting electrochemical properties. The objectives of the present work were: (a) to propose a protocol for using LD to study soil aggregation, (b) to study the aggregation of an Acrisol under the influence of different doses and forms of lime. Samples were collected in 2005 from a Brazilian Acrisol that in 1994 had received 0.0; 2.0; 8.5 and 17.0 Mg ha-1 of lime, left on the soil surface or incorporated. Aggregates from 4.76 to 8.00 mm diameters were studied using the traditional method proposed by Kemper & Chepil (1965), with wet sieving, while aggregates from 1.00 to 2.00 mm were studied using a CILAS® laser diffractometer that distinguishes particles ranging from 0.04 to 2,500.00 μm. LD readings were made after six consecutive pre-treatments, using agitation times, a chemical dispersion agent and ultrasound. Mean Weighted Diameter (MWD) and the Aggregate Stability Index (ASI) calculated, using the traditional method does not discriminate the treatments. However, LD is able to produce detailed data on soil aggregation, resulting in indexes of stability of aggregates that are linearly related to the doses of lime applied (MWD: R² = 0.986 and ASI: R² = 0.876). It may be concluded that electrochemical changes in the Brazilian Acrisol resulting from incorporated lime affect the stability of aggregates, increasing stability with increased doses of lime.
Resumo:
Obtaining information about soil properties under different agricultural uses to plan soil management is very important with a view to sustainability in the different agricultural systems. The aim of this study was to evaluate changes in certain indicators of the physical quality of a dystrophic Red Latosol (Oxisol) under different agricultural uses. The study was conducted in an agricultural area located in northern Paraná State. Dystrophic Red Latosol samples were taken from four sites featuring different types of land use typical of the region: pasture of Brachiaria decumbens (P); sugarcane (CN); annual crops under no-tillage (CAPD); and native forest (permanent conservation area) (control (C)). For each land use, 20 completely randomized, disturbed and undisturbed soil samples were collected from the 0-20 cm soil layer, to determine soil texture, volume of water-dispersible clay, soil flocculation (FD), particle density, quantity of organic matter (OM), soil bulk density (Ds), soil macroporosity (Ma) and microporosity (Mi), total soil porosity (TSP), mean geometric diameter of soil aggregates (MGD), and penetration resistance (PR). The results showed differences in OM, FD, MGD, Ds, PR, and Ma between the control (soil under forest) and the areas used for agriculture (P, CN and CAPD). The soils of the lowest physical quality were those used for CN and CAPD, although only the former presented a Ma level very close to that representing unfavorable conditions for plant growth. For the purposes of this study, the physical properties studied were found to perform well as indicators of soil quality.
Resumo:
Grazing intensities can influence soil aggregation, which can be temporarily and permanently affected. The objective of this study was to evaluate the aggregate stability in water at the end of a soybean cycle and during pasture development in a crop-livestock integration system under no-tillage and grazing intensities. The experiment was initiated in 2001, in a dystrophic Red Latosol, after soybean harvest. Treatments consisted of pasture (black oat + Italian ryegrass) at heights of 10, 20 and 40 cm, grazed by young cattle, and a control (no grazing), followed by soybean cultivation, in a randomized block design. Soil samples were collected at the end of the soybean cycle (May/2007), during animal grazing (September/2007) and at the end of the grazing cycle (November/2007). The grazing period influences aggregate distribution, since in the September sampling (0-5 cm layer), there was a higher proportion of aggregates > 4.76 mm at all grazing intensities. Soil aggregation is higher in no-tillage crop-livestock integration systems in grazed than in ungrazed areas.
Resumo:
Considering that the soil aggregation reflects the interaction of chemical, physical and biological soil factors, the aim of this study was evaluate alterations in aggregation, in an Oxisol under no-tillage (NT) and conventional tillage (CT), since over 20 years, using as reference a native forest soil in natural state. After analysis of the soil profile (cultural profile) in areas under forest management, samples were collected from the layers 0-5, 5-10, 10-20 and 20-40 cm, with six repetitions. These samples were analyzed for the aggregate stability index (ASI), mean weighted diameter (MWD), mean geometric diameter (MGD) in the classes > 8, 8-4, 4-2, 2-1, 1-0.5, 0.5-0.25, and < 0.25 mm, and for physical properties (soil texture, water dispersible clay (WDC), flocculation index (FI) and bulk density (Bd)) and chemical properties (total organic carbon - COT, total nitrogen - N, exchangeable calcium - Ca2+, and pH). The results indicated that more intense soil preparation (M < NT < PC) resulted in a decrease in soil stability, confirmed by all stability indicators analyzed: MWD, MGD, ASI, aggregate class distribution, WDC and FI, indicating the validity of these indicators in aggregation analyses of the studied soil.
Resumo:
Tillage systems are a key element of the technology of crop production, both with a view to crop yield and from the perspective of soil conservation and sustainability of the production system. The aim of this paper was to evaluate the effects of five tillage systems on the physical properties of a cohesive Yellow Argisol. The experiment was installed in the field on January 21, 2011 and lasted 260 days, in an area previously used as pasture with Brachiaria grass without liming or fertilization, but irrigated by a low pressure spray system. The treatments, in five replications and in a randomized block design, consisted of: 1) disk plow (twice) + disk harrow + ridge-furrow tillage (raising a ridge along the planting row), 135 days after transplanting (DP + RID); 2) disk plow (twice) + disk harrow (DP no RID); 3) subsoiler (SB); 4) disk plow (twice) + disk harrow + scarification with three shanks along the plant row (DP + SPR); and 5) disk plow (twice) + disk harrow + scarification with three shanks in the total area (DP + STA). In all tillage systems, furrows were mechanically opened for the papaya plants. After the treatments, the mechanical resistance to penetration was determined, followed by soil moisture, mean weight diameter (MWD), geometric mean diameter (GMD), bulk density (BD), macroporosity (Ma), microporosity (Mi), and number of fruits per plant. There were differences in penetration resistance (PR) between treatments. The subsoiler was more effective to decrease RP to a distance of 0.35 m from the plants, perpendicular to the plant row. The scarifier resulted in a lower PR than DP or SB, even at the depth of 0.40 m, and it was more effective at greater distances perpendicular to the plant. All tillage systems induced a PR between 2.0 and 3.0 MPa at the depth with the highest concentration of papaya tree roots (0-0.25 m), improving the physical conditions to this depth. There was no statistical difference among the treatments for BD, Ma, Mi, MWD, and GMD at a depth of 0.20 m. The disk plow changed the physical properties of the soil most intensely to a depth of 0.20 m. The use of scarification, reduced tillage with a forest subsoiler, or ridge-furrow tillage did not improve the physical properties in the rhizosphere. Reduced tillage with a forest subsoiler resulted in a lower number of fruits per plant than all other treatments, which did not differ from each other.
Resumo:
The construction of a soil after surface coal mining involves heavy machinery traffic during the topographic regeneration of the area, resulting in compaction of the relocated soil layers. This leads to problems with water infiltration and redistribution along the new profile, causing water erosion and consequently hampering the revegetation of the reconstructed soil. The planting of species useful in the process of soil decompaction is a promising strategy for the recovery of the soil structural quality. This study investigated the influence of different perennial grasses on the recovery of reconstructed soil aggregation in a coal mining area of the Companhia Riograndense de Mineração, located in Candiota-RS, which were planted in September/October 2007. The treatments consisted of planting: T1- Cynodon dactylon cv vaquero; T2 - Urochloa brizantha; T3 - Panicum maximun; T4 - Urochloa humidicola; T5 - Hemarthria altissima; T6 - Cynodon dactylon cv tifton 85. Bare reconstructed soil, adjacent to the experimental area, was used as control treatment (T7) and natural soil adjacent to the mining area covered with native vegetation was used as reference area (T8). Disturbed and undisturbed soil samples were collected in October/2009 (layers 0.00-0.05 and 0.10-0.15 m) to determine the percentage of macro- and microaggregates, mean weight diameter (MWD) of aggregates, organic matter content, bulk density, and macro- and microporosity. The lower values of macroaggregates and MWD in the surface than in the subsurface layer of the reconstructed soil resulted from the high degree of compaction caused by the traffic of heavy machinery on the clay material. After 24 months, all experimental grass treatments showed improvements in soil aggregation compared to the bare reconstructed soil (control), mainly in the 0.00-0.05 m layer, particularly in the two Urochloa treatments (T2 and T4) and Hemarthria altissima (T5). However, the great differences between the treatments with grasses and natural soil (reference) indicate that the recovery of the pre-mining soil structure could take decades.
Resumo:
Water-soluble polymers are characterized as effective flocculating agents due to their molecular features. Their application to soils with horizons with structural problems, e.g, a cohesive character, contributes to improvements in the physical quality and thus to the agricultural suitability of such soils. The purpose of this study was to evaluate the structural quality of soils with cohesive horizons of coastal tablelands in the State of Pernambuco treated with polyacrylamide (PAM) as chemical soil conditioner. To this end, three horizons (one cohesive and two non-cohesive) of a Yellow Argisol (Ultisol) were evaluated and to compare cohesive horizons, the horizon of a Yellow Latosol (Oxisol) was selected. The treatments consisted of aqueous PAM solutions (12.5; 50.0; 100.0 mg kg-1) and distilled water (control). The structural aspects of the horizons were evaluated by the stability (soil mass retained in five diameter classes), aggregate distribution per size class (mean weight diameter- MWD, geometric mean diameter - GMD) and the magnitude of the changes introduced by PAM by measuring the sensitivity index (Si). Aqueous PAM solutions increased aggregate stability in the largest evaluated diameter class of the cohesive and non-cohesive horizons, resulting in higher MWD and GMD, with highest efficiency of the 100 mg kg-1 solution. The cohesive horizon Bt1 in the Ultisol was most sensitive to the action of PAM, where highest Si values were found, but the structural quality of the BA horizon of the Oxisol was better in terms of stability and aggregate size distribution.
Resumo:
The no-till system with complex cropping sequences may improve the structural quality and carbon (C) sequestration in soils of the tropics. Thus, the objective of this study was to evaluate the effects of cropping sequences after eight years under the no-till system on the physical properties and C sequestration in an Oxisol in the municipality of Jaboticabal, Sao Paulo, Brazil. A randomized split-block design with three replications was used. The treatments were combinations of three summer cropping sequences - corn/corn (Zea mays L.) (CC), soybean/soybean (Glycine max L. Merryll) (SS), and soybean-corn (SC); and seven winter crops - corn, sunflower (Helianthus annuus L.), oilseed radish (Raphanus sativus L.), pearl millet (Pennisetum americanum (L.) Leeke), pigeon pea (Cajanus cajan (L.) Millsp), grain sorghum (Sorghum bicolor (L.) Moench), and sunn hemp (Crotalaria juncea L.). Soil samples were taken at the 0-10 cm depth after eight years of experimentation. Soil under SC and CC had higher mean weight diameter (3.63 and 3.55 mm, respectively) and geometric mean diameter (3.55 and 2.92 mm) of the aggregates compared to soil under SS (3.18 and 2.46 mm). The CC resulted in the highest soil organic C content (17.07 g kg-1), soil C stock (15.70 Mg ha-1), and rate of C sequestration (0.70 Mg ha-1 yr-1) among the summer crops. Among the winter crops, soil under pigeon pea had the highest total porosity (0.50 m³ m-3), and that under sunn hemp had the highest water stable aggregates (93.74 %). In addition, sunn hemp did not differ from grain sorghum and contained the highest soil organic C content (16.82 g kg-1) and also had the highest rate of C sequestration (0.67 Mg ha-1 yr-1). The soil resistance to penetration was the lower limit of the least limiting water range, while the upper limit was air-filled porosity for soil bulk densities higher than 1.39 kg dm-3 for all cropping sequences. Within the SC sequence, soil under corn and pigeon pea increased least limiting water range by formation of biopores because soil resistance to penetration decreased with the increase in soil bulk density.
Resumo:
ABSTRACT The removal of thick layers of soil under native scrubland (Cerrado) on the right bank of the Paraná River in Selvíria (State of Mato Grosso do Sul, Brazil) for construction of the Ilha Solteira Hydroelectric Power Plant caused environmental damage, affecting the revegetation process of the stripped soil. Over the years, various kinds of land use and management systems have been tried, and the aim of this study was to assess the effects of these attempts to restore the structural quality of the soil. The experiment was conducted considering five treatments and thirty replications. The following treatments were applied: stripped soil without anthropic intervention and total absence of plant cover; stripped soil treated with sewage sludge and planted to eucalyptus and grass a year ago; stripped soil developing natural secondary vegetation (capoeira) since 1969; pastureland since 1978, replacing the native vegetation; and soil under native vegetation (Cerrado). In the 0.00-0.20 m layer, the soil was chemically characterized for each experimental treatment. A 30-point sampling grid was used to assess soil porosity and bulk density, and to assess aggregate stability in terms of mean weight diameter (MWD) and geometric mean diameter (GMD). Aggregate stability was also determined using simulated rainfall. The results show that using sewage sludge incorporated with a rotary hoe improved the chemical fertility of the soil and produced more uniform soil pore size distribution. Leaving the land to develop secondary vegetation or turning it over to pastureland produced an intermediate level of structural soil quality, and these two treatments produced similar results. Stripped soil without anthropic intervention was of the lowest quality, with the lowest values for cation exchange capacity (CEC) and macroporosity, as well as the highest values of soil bulk density and percentage of aggregates with diameter size <0.50 mm, corroborated by its lower organic matter content. However, the percentage of larger aggregates was higher in the native vegetation treatment, which boosted MWD and GMD values. Therefore, assessment of some land use and management systems show that even decades after their implementation to mitigate the degenerative effects resulting from the installation of the Hydroelectric Plant, more efficient approaches are still required to recover the structural quality of the soil.
Resumo:
ABSTRACT The combustion of rice husk generates a partially burnt mixture called rice husk ash (RHA) that can be used as a source of nutrients to crops and as a conditioner of soil physical properties. The objective of this study was to evaluate the effect of RHA levels on the hydro-physical properties of a Typic Hapludult. The experimental design was composed of random blocks with four replications, which comprised plots of 24 m2 and treatments with increasing RHA rates: 0, 40, 80 and 120 Mg ha-1. Undisturbed soil samples were collected in the soil layers of 0.00-0.10 and 0.10-0.20 m after nine months of RHA application, using steel cylinders (0.03 m of height and 0.047 m of diameter). These samples were used to determine soil bulk density (Bd), total soil porosity (TP), soil macroporosity (Ma), soil microporosity (Mi) and the available water capacity (AWC). Disturbed soil samples were collected to determine the stability of soil aggregates in water, mean weight diameter of water stable aggregates (MWD), and soil particle size distribution. The results show that, as the RHA rate increased in the soil, Bd values decreased and TP, Ma and MWD values increased. No effect of RHA was found on Mi and AWC values. The effects of RHA on the S parameter (Dexter, 2004), precompression stress and compression index (Dias Junior and Pierce, 1995) values are consistent those shown for density and total porosity. Rice husk ash was shown to be an efficient residue to improve soil physical properties, mainly at rates between 40 and 80 Mg ha-1. Rice husk ash reduces bulk density and increases total porosity, macroporosity and soil aggregation, but does not affect microporosity, field capacity, permanent wilting point, and available water capacity of the soil. The effect of rice husk ash on the S parameter, precompression stress and index compressibility coefficient values are consistent with those observed for the bulk density and total porosity.