136 resultados para macrophage microbicidal mechanisms
Resumo:
Lipid bodies [lipid droplets (LBs)] are lipid-rich organelles involved in lipid metabolism, signalling and inflammation. Recent findings suggest a role for LBs in host response to infection; however, the potential functions of this organelle in Toxoplasma gondii infection and how it alters macrophage microbicidal capacity during infection are not well understood. Here, we investigated the role of host LBs in T. gondii infection in mouse peritoneal macrophages in vitro. Macrophages cultured with mouse serum (MS) had higher numbers of LBs than those cultured in foetal bovine serum and can function as a model to study the role of LBs during intracellular pathogen infection. LBs were found in association with the parasitophorous vacuole, suggesting that T. gondii may benefit from this lipid source. Moreover, increased numbers of macrophage LBs correlated with high prostaglandin E2 (PGE2) production and decreased nitric oxide (NO) synthesis. Accordingly, LB-enriched macrophages cultured with MS were less efficient at controlling T. gondii growth. Treatment of macrophages cultured with MS with indomethacin, an inhibitor of PGE2 production, increased the microbicidal capacity against T. gondii. Collectively, these results suggest that culture with MS caused a decrease in microbicidal activity of macrophages against T. gondii by increasing PGE2 while lowering NO production.
Resumo:
The aqueous fraction of the ethanolic extract (AFL) of Cissampelos sympodialis Eichl (Menispermaceae), popularly known as milona, has been shown to have both immunosuppressive and anti-inflammatory effects. In the present study we investigated the modulation of macrophage antimicrobicidal activity by in vitro treatment with the extract from C. sympodialis. Normal and thioglycolate-elicited mouse peritoneal macrophages were infected in vitro with the protozoan Trypanosoma cruzi DM28c clone. We observed that the AFL (used at doses ranging from 13 to 100 µg/ml) increased T. cruzi growth and induced a 75% reduction in nitric oxide production. This inhibition could be mediated by the stimulation of macrophage interleukin-10 (IL-10) secretion since the in vitro treatment with the AFL stimulated IL-10 production by T. cruzi-infected macrophages. These results suggest that the anti-inflammatory effect of the AFL from C. sympodialis could be, at least in part, mediated by the inhibition of macrophage functions and that the inhibition of macrophage microbicidal activity induced by the C. sympodialis extract may be mediated by the decrease in macrophage function mediated by interleukin-10 production.
Resumo:
We have designed a vaccine model based on induction of cell-mediated immunity and shown that it protects mice against Schistosoma mansoni infection. Mice are immunized by intradermal injection with schistosome antigens plus BCG. Resistance is dependent on the route of antigen presentation and the adjuvant chosen. The pattern of resistance correlates with sensitization of T lymphocytes for production of gamma interferon, a macrophage activating lymphokine that stimulates the cellular effector mechanism of protection. Purified schistosome paramyosin, a muscle cell component present in soluble parasite antigenic preparations, is immunogenic for T lymphocytes and induces resistance when given intradermally with BCG. It is likely that this protein, and possibly other soluble molecules that are released by the parasites of a challenge infection, induce a cellular inflammatory response resulting in larval trapping and/or killing by activated macrophages. These results verify the feasibility of a vaccine against schistosomiasis based on induction of cell-mediated immune resistance mechanisms.
Resumo:
Probiotics are formulations containing live microorganisms or microbial stimulants that have some beneficial influence on the maintenance of a balanced intestinal microbiota and on the resistance to infections. The search for probiotics to be used in prevention or treatment of enteric infections, as an alternative to antibiotic therapy, has gained significant impulse in the last few years. Several studies have demonstrated the beneficial effects of lactic acid bacteria in controlling infection by intestinal pathogens and in boosting the host's nonspecific immune response. Here, we studied the use of Lactobacillus acidophilus UFV-H2b20, a lactic acid bacterium isolated from a human newborn from Viçosa, Minas Gerais, Brazil, as a probiotic. A suspension containing 108 cells of Lactobacillus acidophilus UFV-H2b20 was inoculated into groups of at least five conventional and germfree Swiss mice to determine its capacity to stimulate the host mononuclear phagocytic activity. We demonstrate that this strain can survive the stressing conditions of the intestinal tract in vivo. Moreover, the monoassociation of germfree mice with this strain for seven days improved the host's macrophage phagocytic capacity, as demonstrated by the clearance of a Gram-negative bacterium inoculated intravenously. Monoassociated mice showed an undetectable number of circulating E. coli, while 0.1% of the original inoculum was still present in germfree animals. Mice treated with viable or heat-killed Lactobacillus acidophilus UFV-H2b20 presented similarly improved clearance capacity when compared with germfree controls. In addition, monoassociated mice had twice the amount of Kupffer cells, which are responsible for the clearance of circulating bacteria, compared to germfree controls. These results suggest that the L. acidophilus strain used here stimulates a nonspecific immune response and is a strong candidate to be used as a probiotic.
Resumo:
The epithelial-mesenchymal transition (EMT) is involved in neoplastic metastasis, and the RON protein may be involved. In the present study, we determined the role and the mechanisms of action of RON in EMT in Madin-Darby canine kidney (MDCK) cells by Western blot and cell migration analysis. Activation of RON by macrophage stimulating protein (MSP) results in cell migration and initiates changes in the morphology of RON-cDNA-transfected MDCK cells. The absence of E-cadherin, the presence of vimentin and an increase in Snail were observed in RE7 cells, which were derived from MDCK cells transfected with wt-RON, compared with MDCK cells. Stimulation of RE7 cells with MSP resulted in increased migration (about 69% of the wounded areas were covered) as well as increased activation of extracellular signal-regulated kinase 1/2 (Erk1/2) and glycogen synthase kinase-3β (GSK-3β; the percent of the activation ratio was 143.6/599.8% and 512.4%, respectively), which could be inhibited with an individual chemical inhibitor PD98059 (50 μM) specific to MAPK/ERK kinase (the percent inhibition was 98.9 and 81.2%, respectively). Thus, the results indicated that RON protein could mediate EMT in MDCK cells via the Erk1/2 pathway. Furthermore, GSK-3β regulates the function of Snail in controlling EMT by this pathway.
Resumo:
Macrophage migration inhibitory factor (MIF), a pleiotropic cytokine, plays an important role in the pathogenesis of atrial fibrillation; however, the upstream regulation of MIF in atrial myocytes remains unclear. In the present study, we investigated whether and how MIF is regulated in response to the renin-angiotensin system and oxidative stress in atrium myocytes (HL-1 cells). MIF protein and mRNA levels in HL-1 cells were assayed using immunofluorescence, real-time PCR, and Western blot. The result indicated that MIF was expressed in the cytoplasm of HL-1 cells. Hydrogen peroxide (H2O2), but not angiotensin II, stimulated MIF expression in HL-1 cells. H2O2-induced MIF protein and gene levels increased in a dose-dependent manner and were completely abolished in the presence of catalase. H2O2-induced MIF production was completely inhibited by tyrosine kinase inhibitors genistein and PP1, as well as by protein kinase C (PKC) inhibitor GF109203X, suggesting that redox-sensitive MIF production is mediated through tyrosine kinase and PKC-dependent mechanisms in HL-1 cells. These results suggest that MIF is upregulated by HL-1 cells in response to redox stress, probably by the activation of Src and PKC.
Resumo:
The objective of the present study was to develop an efficient and reproducible protocol of immunization of guinea pigs with P. brasiliensis antigens as an animal model for future studies of protective immunity mechanisms. We tested three different antigens (particulate, soluble and combined) and six protocols in the presence and absence of Freund's complete adjuvant and with different numbers of immunizing doses and variable lenght of time between the last immunizing dose and challenge. The efficacy of the immunizing protocol was evaluated by measuring the humoral and cellular anti-P. brasiliensis immune response of the animals, using immuno-diffusion, skin test and macrophage migration inhibition test. It was observed that: 1. Three immunizing doses of the antigens induced a more marked response than two doses; 2. The highest immune response was obtained with the use of Freund's complete adjuvant; 3. Animals challenged a long time (week 6) after the last immunizing dose showed good anti-P. brasiliensis immune response; 4. The particulate antigen induced the lowest immune response. The soluble and the combined antigens were equally efficient in raising good humoral and cellular anti-P. brasiliensis immune response
Resumo:
Out of the twenty-four samples of shrimp and fish muscle used for this study, twelve were collected near a large marine sewer for waste disposal, 3 km off the coast of Fortaleza (Brazil) and used for the isolation of E. coli. Other twelve were collected at the Mucuripe fresh fish market (Fortaleza, Brazil) and used for the isolation of Staphylococcus aureus. Ethanol, water and acetone-diluted extracts of guava and papaya leaf sprouts were tested on the bacteria in order to verify their microbicidal potential. The E. coli strains used in the trials were rated LT positive. The papaya leaf extracts (Carica papaya Linn) showed no microbicidal activity while the guava sprout extracts (Psidium guajava Linn) displayed halos exceeding 13 mm for both species, an effect considered to be inhibitory by the method employed. Guava sprout extracts by 50% diluted ethanol most effectively inhibited E. coli (EPEC), while those in 50% acetone were less effective. It may be concluded that guava sprout extracts constitute a feasible treatment option for diarrhea caused by E. coli or by S. aureus-produced toxins, due to their quick curative action, easy availability in tropical countries and low cost to the consumer.
Resumo:
Paracoccidioidomycosis is a chronic granulomatous disease that induces a specific inflammatory and immune response. The participation of nitric oxide (NO), a product of the inducible nitric oxide synthase enzyme (iNOS), as an important fungicidal molecule against Paracoccidioides brasiliensis has been demonstrated. In order to further characterize the Oral Paracoccidioidomycosis (OP), we undertook an immunohistochemical study of iNOS+, CD45RO+, CD3+, CD8+, CD20+, CD68+ cells and mast cells. The samples were distributed in groups according to the number of viable fungi per mm². Our results showed weak immunolabeling for iNOS in the multinucleated giant cells (MNGC) and in most of the mononuclear (MN) cells, and the proportion of iNOS+ MN/MNGC cells in the OP were comparable to Control (clinically healthy oral tissues). Additionally, our analysis revealed a similarity in the number of CD4+ cells between the Control and the OP groups with higher numbers of fungi. These findings suggest that a low expression of iNOS and a decrease in the CD4+ T cells in OP may represent possible mechanisms that permit the local fungal multiplication and maintenance of active oral lesions.
Resumo:
Chromoblastomycosis (CR) is a subcutaneous chronic mycosis characterized by a granulomatous inflammatory response. However, little is known regarding the pattern of leukocyte subsets in CR and the pathways involved in their recruitment. The objective of this study was to assess the cellular subsets, chemokine, chemokine receptors and enzymes in CR. The inflammatory infiltrate was characterized by immunohistochemistry using antibodies against macrophages (CD68), Langerhans'cells (S100), lymphocytes (CD3, CD4, CD8, CD45RO, CD20 and CD56) and neutrophils (CD15). The expression of MIP-1alpha (Macrophage inflammatory protein-1alpha), chemokine receptors (CXCR3 and CCR1) and enzymes (superoxide dismutase-SOD and nitric oxide synthase-iNOS) was also evaluated by the same method. We observed an increase in all populations evaluated when compared with the controls. Numbers of CD15+ and CD56+ were significantly lower than CD3+, CD4+, CD20+ and CD68+ cells. Statistical analysis revealed an association of fungi numbers with CD3, CD45RO and iNOS-positive cells. Furthermore, MIP-1alpha expression was associated with CD45RO, CD68, iNOS and CXCR3. Our results suggest a possible role of MIP-1alpha and fungi persistence in the cell infiltration in CR sites.
Resumo:
The Flaviviridae family, Flavivirus genus includes viruses that are transmitted to vertebrates by infected mosquitoes or ticks. The genus Flavivirus includes a variety of viruses that cause diseases such as acute febrile illness, encephalitis, and hemorrhagic fever. Flaviviruses primarily infect blood monocytes and tissue macrophages, which have been shown to be permissive, supporting viral replication and serving as virus reservoirs. On the other hand, these cells may have an important antiviral activity related to modulation by cytokine production and by the capacity of these cells to synthesize reactive free radicals such as nitric oxide (NO) which can have a microbicidal effect. The present study was performed in order to determine the production of cytokines interleukin-1beta (IL-1β), tumor necrosis factor -alpha (TNF-α), transforming growth factor- beta (TGF-β) and interferon -alpha (IFN-α) and NO by macrophages infected with one of four Brazilian flaviviruses, Bussuquara virus (BUSV), Yellow Fever virus (YFV), Rocio virus (ROCV) and Encephalitis Saint Louis virus (SLEV), and to verify the possible antiviral effect of NO during macrophage infection with ROCV. Moreover, we asked if the different viruses were able to regulate bacterial lipopolysaccharide (LPS) induced cytokine production. Our results showed that YFV and SLEV reduced the production of IL-1β and TGF-β by LPS-stimulated macrophages, while ROCV only diminished LPS-stimulated TGF-β synthesis. On the other hand, BUSV more likely favored an enhancement of the LPS-induced production of IL-1β by macrophages. Additionally, while most of the viruses stimulated the production of IFN-α, none of them altered the production of TNF-α by murine macrophages. Interestingly, all viruses induced synthesis of NO that was not correlated with antiviral activity for ROCV.
Resumo:
This study examined the susceptibility of peritoneal macrophage (PM) from the Neotropical primates: Callithrix jacchus, Callithrix penicillata, Saimiri sciureus, Aotus azarae infulatus and Callimico goeldii to ex vivo Leishmania (L.) infantum chagasi-infection, the etiological agent of American visceral leishmaniasis (AVL), as a screening assay for evaluating the potential of these non-human primates as experimental models for studying AVL. The PM-susceptibility to infection was accessed by the PM-infection index (PMI) at 24, 72 h and by the mean of these rates (FPMI), as well as by the TNF-α, IL-12 (Capture ELISA) and Nitric oxide (NO) responses (Griess method). At 24h, the PMI of A. azarae infulatus (128) was higher than those of C. penicillata (83), C. goeldii (78), S. sciureus (77) and C. jacchus (55). At 72h, there was a significant PMI decrease in four monkeys: A. azarae infulatus (128/37), C. penicillata (83/38), S. sciureus (77/38) and C. jacchus (55/12), with exception of C. goeldii (78/54). The FPMI of A. azarae infulatus (82.5) and C. goeldii (66) were higher than C. jacchus (33.5), but not higher than those of C. penicillata (60.5) and S. sciureus (57.5). The TNF-a response was more regular in those four primates which decreased their PMI at 24/72 h: C. jacchus (145/122 pg/mL), C. penicillata (154/130 pg/mL), S. sciureus (164/104 pg/mL) and A. azarae infulatus (154/104 pg/mL), with exception of C. goeldii (38/83 pg/mL). The IL-12 response was mainly prominent in A. infulatus and C. goeldii which presented the highest FPMI and, the NO response was higher in C. goeldii, mainly at 72 h. These findings strongly suggest that these New World primates have developed a resistant innate immune response mechanism capable of controlling the macrophage intracellular growth of L. (L.) i. chagasi-infection, which do not encourage their use as animal model for studying AVL.
Resumo:
The development of integrated measures which involve sterile mate release to supplement the conventional insecticidal techniques used in controlagainst insects of medical importance, raised the question, whether the vectors of Chagas'disease possess the natural mechanisms by manipulation of which they may be controlled. Results of earlier expenments, that had been published previously, were restricted to fragmentary information that raised various questions, the answer to which became available in the study herein described. Interspecific hybrids were produced from reciprocal crosses between T. pseudomaculata and T. sórdida and from unilateral crosses between female T. pseudomaculata and male. T. infestans. These females mated with males, laid less than the normal complement of eggs, but offspring was relatively abundant. When T. pseudomaculata females were paired with T. brasiliensis males, hybridization was more difficult because few of the females mated and those that did had a strongly reduced fertility. Adults emerged from ali crosses but exhibited sex disproportion, females predominating in all populations but one. The two Rhodnius species tested were also found to cross, but only when female R. prolixus were paired with male R. neglectus. These females laid a relatively high complement o f eggs, had a strongly reduced fertility, but 50% of the fertile eggs developed into vigorous adults, males predominating females. Neither type of hybrid male elicited fertilized eggs from either parental type of female, through their vesicula seminal is were found to be packed with spermatozoa, some normal looking and moving, others underdeveloped and motionless. Although, no artificial insemination was performed, the sperm in itself did not appear to be the prime inducer of sterility. Females paired with these hybrids did mate, sperm was transfered, as evidenced by the discharged spermatophores smeared with sperm, but did notcontain spermatozoa in their spermatecae. The failure of the sperm to migrate to the spermatecae indicate prezygotic pos-copulation incompatibility, thus the hybrid male can't be used to suppress populations. The female hybrids mated with parent males of either species had reduced fertility and ther sons were sterile as were those of their fertile daughters. However, continous backcrossing of the hybrid females and their female progeny to parental males partially restored fertility of the males and increased fertility of females, as scored by egg hatchability. Fertility of hybrid females, measured by the yield of adults capable to reproduce, indicated that the reproductive perfomance decreased when hybrid females and their daughters were backcrossed additional generations to parental males. It is tentatively suggested that hybrid females could be used for suppression if they compete efficiently with wild females.