20 resultados para human artificial chromosome
Resumo:
To provide a novel resource for analysis of the genome of Biomphalaria glabrata, members of the international Biomphalaria glabrata Genome Initiative (biology.unm.edu/biomphalaria-genome.html), working with the Arizona Genomics Institute (AGI) and supported by the National Human Genome Research Institute (NHGRI), produced a high quality bacterial artificial chromosome (BAC) library. The BB02 strain B. glabrata, a field isolate (Belo Horizonte, Minas Gerais, Brasil) that is susceptible to several strains of Schistosoma mansoni, was selfed for two generations to reduce haplotype diversity in the offspring. High molecular weight DNA was isolated from ovotestes of 40 snails, partially digested with HindIII, and ligated into pAGIBAC1 vector. The resulting B. glabrata BAC library (BG_BBa) consists of 61824 clones (136.3 kb average insert size) and provides 9.05 × coverage of the 931 Mb genome. Probing with single/low copy number genes from B. glabrata and fingerprinting of selected BAC clones indicated that the BAC library sufficiently represents the gene complement. BAC end sequence data (514 reads, 299860 nt) indicated that the genome of B. glabrata contains ~ 63% AT, and disclosed several novel genes, transposable elements, and groups of high frequency sequence elements. This BG_BBa BAC library, available from AGI at cost to the research community, gains in relevance because BB02 strain B. glabrata is targeted whole genome sequencing by NHGRI.
Resumo:
Reading the human Y chromosome: the emerging DNA markers and human genetic history.
Resumo:
"The host-parasite relationship" is a vast and diverse research field which, despite huge human and financial input over many years, remains largely shrouded in mystery. Clearly, the adaptation of parasites to their different host species, and to the different environmental stresses that they represent, depends on interactions with, and responses to, various molecules of host and/or parasite origin. The schistosome genome project is a primary strategy to reach the goal; this systematic research project has successfully developed novel technologies for qualitative and quantitative characterization of schistosome genes and genome organization by extensive international collaboration between top quality laboratories. Schistosomes are a family of parasitic blood flukes (Phylum Platyhelminthes), which have seven pairs of autosomal chromosomes and one pair of sex chromosomes (ZZ for a male worm and ZW for a female), of a haploid genome size of 2.7x108 base pairs (Simpson et al. 1982). Schistosomes are ideal model organisms for the development of genome mapping strategies since they have a small genome size comparable to that of well-characterized model organisms such as Caenorhabditis elegans (100 Mb) and Drosophila (165 Mb), and contain functional genes with a high level of homology to the host mammalian genes. Here we summarize the current progress in the schistosome genome project, the information of 3,047 transcribed genes (Expressed Sequence Tags; EST), complete sets of cDNA and genomic DNA libraries (including YAC and cosmid libraries) with a mapping technique to the well defined schistosome chromosomes. The schistosome genome project will further identify and characterize the key molecules that are responsible for host-parasite adaptation, i.e., successful growth, development, maturation and reproduction of the parasite within its host in the near future
Resumo:
The variability of the lengths of the heterochromatic and euchromatic segments of the human Y chromosome was studied by a quantitative method of densitometric measurement in 60 normal and unrelated black individuals (30 with and 30 without devotional surnames), living in Salvador, Bahia, northeastern Brazil. Thirty normal and unrelated Caucasian individuals of European origin, living in Curitiba, Paraná, south Brazil, were included as controls. The heterochromatic segment and total Y chromosome lengths were greater in caucasians than in blacks without devotional surnames, and these were greater than in blacks with devotional surnames. These findings are in agreement with previous reports of a higher percentage of black ancestry in blacks carrying devotional surnames than those carrying non-devotional ones.
Resumo:
Mercury is a xenobiotic metal that is a highly deleterious environmental pollutant. The biotransformation of mercury chloride (HgCl2) into methylmercury chloride (CH3HgCl) in aquatic environments is well-known and humans are exposed by consumption of contaminated fish, shellfish and algae. The objective of the present study was to determine the changes induced in vitro by two mercury compounds (HgCl2 and CH3HgCl) in cultured human lymphocytes. Short-term human leukocyte cultures from 10 healthy donors (5 females and 5 males) were set-up by adding drops of whole blood in complete medium. Cultures were separately and simultaneously treated with low doses (0.1 to 1000 µg/l) of HgCl2 and CH3HgCl and incubated at 37ºC for 48 h. Genotoxicity was assessed by chromosome aberrations and polyploid cells. Mitotic index was used as a measure of cytotoxicity. A significant increase (P < 0.05) in the relative frequency of chromosome aberrations was observed for all concentrations of CH3HgCl when compared to control, whether alone or in an evident sinergistic combination with HgCl2. The frequency of polyploid cells was also significantly increased (P < 0.05) when compared to control after exposure to all concentrations of CH3HgCl alone or in combination with HgCl2. CH3HgCl significantly decreased (P < 0.05) the mitotic index at 100 and 1000 µg/l alone, and at 1, 10, 100, and 1000 µg/l when combined with HgCl2, showing a synergistic cytotoxic effect. Our data showed that low concentrations of CH3HgCl might be cytotoxic/genotoxic. Such effects may indicate early cellular changes with possible biological consequences and should be considered in the preliminary evaluation of the risks of populations exposed in vivo to low doses of mercury.
Resumo:
DEAD-box proteins comprise a family of ATP-dependent RNA helicases involved in several aspects of RNA metabolism. Here we report the characterization of the human DEAD-box RNA helicase DDX26. The gene is composed of 14 exons distributed over an extension of 8,123 bp of genomic sequence and encodes a transcript of 1.8 kb that is expressed in all tissues evaluated. The predicted amino acid sequence shows a high similarity to a yeast DEAD-box RNA helicase (Dbp9b) involved in ribosome biogenesis. The new helicase maps to 7p12, a region of frequent chromosome amplifications in glioblastomas involving the epidermal growth factor receptor (EGFR) gene. Nevertheless, co-amplification of DDX26 with EGFR was not detected in nine tumors analyzed.
Resumo:
Detection of papillomavirus DNA in sity hybridization technique was perfomed in 29 symptomatic patients (6 males and 23 females) during the period of 1989-1991 at the Clinic for Sexually Transmitted Diseases, Universidade Federal Fluminense, State of rio de Janeiro. All the male patients had condyloma acuminata. Only HPV 6/11 were found in these lesions. Clinical features inthe female patients included vulvar condyloma acuminata, bowenoid populosis, flat cervical condyloma, cervical condyloma acuminatum and cervical intraepithelialneoplasia grade II (CIN II). We also found cases of condyloma acuminata associated to vulvar intraepithelial neoplasia grade III (VIN III), as well as to vaginal invasive carcinoma. HPV 6/11 and 16/18 were found in vulvar condyloma acuminata. Mixed infection by 6/11-16/18 HPV were also seen in these lesions as well as in the patient who had cervical condyloma acuminatum. HPV 16/18 were found in the condyloma acuminatum plus VIN III and in the CIN II lesions. We have found HPV31/33/51 in the specimen of condyloma acuminatum plus invasive carcinoma. In order to investigate the ultrastructural aspects of HPV infection in genital tissue, the biopsies of three female patients were observed under electron microscope.Mature virus particles were found in the cells of a condyloma acuminatum as wellas in the condyloma acuminatum plus invasive carcinoma case. In another sample, chromosome breakages were found in the nuclei of the infected cells although no viral particles were observed.
Resumo:
The vanC1 gene, which is chromosomally located, confers resistance to vancomycin and serves as a species marker for Enterococcus gallinarum. Enterococcus faecium TJ4031 was isolated from a blood culture and harbours the vanC1gene. Polymerase chain reaction (PCR) assays were performed to detect vanXYc and vanTc genes. Only the vanXYc gene was found in the E. faecium TJ4031 isolate. The minimum inhibitory concentrations of vancomycin and teicoplanin were 2 µg/mL and 1 µg/mL, respectively. Real-time reverse transcription-PCR results revealed that the vanC1and vanXYc genes were not expressed. Pulsed-field gel electrophoresis and southern hybridisation results showed that the vanC1 gene was encoded in the chromosome. E. faecalis isolated from animals has been reported to harbour vanC1gene. However, this study is the first to report the presence of the vanC1gene in E. faecium of human origin. Additionally, our research showed the vanC1gene cannot serve as a species-specific gene of E. gallinarum and that it is able to be transferred between bacteria. Although the resistance marker is not expressed in the strain, our results showed that E. faecium could acquire the vanC1gene from different species.
Resumo:
Paracoccidioidomycosis (PCM) is caused by dimorphic fungi from theParacoccidioides brasiliensis complex. Previous studies have demonstrated that the severity of disease is associated with a T-helper 2 immune response characterised by high interleukin (IL)-4 production. In the present study we analysed two polymorphisms in the IL-4gene (-590 C/T and intron-3 microsatellite) in 76 patients with PCM and 73 control subjects from an endemic area. The production of IL-4 by peripheral blood mononuclear cells after antigen or phytohaemagglutinin stimulation was determined by ELISA. A significant correlation was observed between the RP2/RP2 intron-3 genotype and infection with Paracoccidioides sp.(p = 0.011), whereas the RP1/RP1 genotype was correlated with resistance. No significant correlation was observed for the IL-4promoter polymorphism. Furthermore, the low IL-4 expression observed in the control group compared with patients was associated with the RP1/RP1 genotype. These results suggest that IL-4polymorphisms might be associated with the ability of the host to control Paracoccidioides sp.infection. The relevance of this polymorphism is supported by the observation that patients with disease produce high levels of IL-4 following mitogen or antigen stimulation. The IL-4gene is located in the cytokine cluster region of chromosome 5 where other polymorphisms have also been described.
Resumo:
The human immunoglobulin lambda variable locus (IGLV) is mapped at chromosome 22 band q11.1-q11.2. The 30 functional germline v-lambda genes sequenced untill now have been subgrouped into 10 families (Vl1 to Vl10). The number of Vl genes has been estimated at approximately 70. This locus is formed by three gene clusters (VA, VB and VC) that encompass the variable coding genes (V) responsible for the synthesis of lambda-type Ig light chains, and the Jl-Cl cluster with the joining segments and the constant genes. Recently the entire variable lambda gene locus was mapped by contig methodology and its one- megabase DNA totally sequenced. All the known functional V-lambda genes and pseudogenes were located. We screened a human genomic DNA cosmid library and isolated a clone with an insert of 37 kb (cosmid 8.3) encompassing four functional genes (IGLV7S1, IGLV1S1, IGLV1S2 and IGLV5a), a pseudogene (VlA) and a vestigial sequence (vg1) to study in detail the positions of the restriction sites surrounding the Vl genes. We generated a high resolution restriction map, locating 31 restriction sites in 37 kb of the VB cluster, a region rich in functional Vl genes. This mapping information opens the perspective for further RFLP studies and sequencing
Resumo:
The possibility that Ureaplasma urealyticum might play an important role in human infertility was first raised more than 20 years ago, but this association remains speculative. Considering the hypothesis that the pathogenicity of Ureaplasma urealyticum may depend on its serotypes, the clastogenic effects of different strains of Ureaplasma urealyticum, at concentrations of 103 CCU (color changing units)/ml, 104 CCU/ml and 105 CCU/ml, were evaluated in vitro in short-term cultures of human lymphocytes. Total or partial mitotic inhibition was produced by Ureaplasma urealyticum serotypes 2, 3 and 10 independent of the concentration (103 CCU/ml, 104 CCU/ml or 105 CCU/ml) of the microorganisms employed. In contrast, the clastogenic effects observed with serotypes 1, 7 and 12 varied according to the concentration employed in the test. Mitotic alterations were observed in Ureaplasma urealyticum serotypes 5, 6, 7, 8, 9, 11 and 12. Chromatid gaps (53.0%) and chromatid breaks (13.9%) were the most frequent types of alterations observed. The results of this in vitro assay demonstrated that the clastogenic effects varied with the Ureaplasma urealyticum serotypes evaluated
Resumo:
Girolando (Gir x Holstein) is a very common dairy breed in Brazil because it combines the rusticity of Gir (Bos indicus) with the high milk yield of Holstein (Bos taurus). The ovarian follicular dynamics and hormonal treatments for synchronization of ovulation and timed artificial insemination were studied in Girolando heifers. The injection of a gonadotrophin-releasing hormone (GnRH) agonist was followed 6 or 7 days (d) later by prostaglandin F2a (PGF2a). Twenty-four hours after PGF2a injection either human chorionic gonadotropin (hCG, GPh-d6 and GPh-d7 groups) or estradiol benzoate (EB, GPE-d6 and GPE-d7 groups) was administered to synchronize ovulation and consequently allow timed artificial insemination (AI) 24 and 30 h after hCG and EB injection, respectively. Follicular dynamics in Girolando heifers was characterized by the predominance of three follicular waves (71.4%) with sizes of dominant follicles (10-13 mm) and corpus luteum (approximately 20 mm) similar to those for Bos indicus cattle. In the GnRH-PGF-hCG protocol, hCG administration induced earlier ovulation (67.4 h, P<0.01) compared to the control group (GnRH-PGF) and a better synchronization of ovulation, since most of it occurred within a period of 12 to 17 h. Pregnancy rate after timed AI was 42.8 (3/7, GPh-d6) to 50% (7/14, GPh-d7). In contrast, estradiol benzoate (GnRH-PGF-EB protocol) synchronized ovulation of only 5 of 11 heifers from the GPE-d7 group and of none (0/7) from the GPE-d6 group, which led to low pregnancy rates after timed AI (27.3 and 0%, respectively). However, since a small number of Girolando heifers was used to determine pregnancy rates in the present study, pregnancy rates should be confirmed with a larger number of animals.
Resumo:
Embryonic stem cells are totipotent cells derived from the inner cell mass of blastocysts. Recently, the development of appropriate culture conditions for the differentiation of these cells into specific cell types has permitted their use as potential therapeutic agents for several diseases. In addition, manipulation of their genome in vitro allows the creation of animal models of human genetic diseases and for the study of gene function in vivo. We report the establishment of new lines of murine embryonic stem cells from preimplantation stage embryos of 129/Sv mice. Most of these cells had a normal karyotype and an XY sex chromosome composition. The pluripotent properties of the cell lines obtained were analyzed on the basis of their alkaline phosphatase activity and their capacity to form complex embryoid bodies with rhythmically contracting cardiomyocytes. Two lines, USP-1 and USP-3, with the best in vitro characteristics of pluripotency were used in chimera-generating experiments. The capacity to contribute to the germ line was demonstrated by the USP-1 cell line. This cell line is currently being used to generate mouse models of human diseases.
Resumo:
In the present paper we discuss the development of "wave-front", an instrument for determining the lower and higher optical aberrations of the human eye. We also discuss the advantages that such instrumentation and techniques might bring to the ophthalmology professional of the 21st century. By shining a small light spot on the retina of subjects and observing the light that is reflected back from within the eye, we are able to quantitatively determine the amount of lower order aberrations (astigmatism, myopia, hyperopia) and higher order aberrations (coma, spherical aberration, etc.). We have measured artificial eyes with calibrated ametropia ranging from +5 to -5 D, with and without 2 D astigmatism with axis at 45º and 90º. We used a device known as the Hartmann-Shack (HS) sensor, originally developed for measuring the optical aberrations of optical instruments and general refracting surfaces in astronomical telescopes. The HS sensor sends information to a computer software for decomposition of wave-front aberrations into a set of Zernike polynomials. These polynomials have special mathematical properties and are more suitable in this case than the traditional Seidel polynomials. We have demonstrated that this technique is more precise than conventional autorefraction, with a root mean square error (RMSE) of less than 0.1 µm for a 4-mm diameter pupil. In terms of dioptric power this represents an RMSE error of less than 0.04 D and 5º for the axis. This precision is sufficient for customized corneal ablations, among other applications.
Resumo:
Gastric cancer is the second most frequent type of neoplasia and also the second most important cause of death in the world. Virtually all the established cell lines of gastric neoplasia were developed in Asian countries, and western countries have contributed very little to this area. In the present study we describe the establishment of the cell line ACP01 and characterize it cytogenetically by means of in vitro immortalization. Cells were transformed from an intestinal-type gastric adenocarcinoma (T4N2M0) originating from a 48-year-old male patient. This is the first gastric adenocarcinoma cell line established in Brazil. The most powerful application of the cell line ACP01 is in the assessment of cytotoxicity. Solid tumor cell lines from different origins have been treated with several conventional and investigational anticancer drugs. The ACP01 cell line is triploid, grows as a single, non-organized layer, similar to fibroblasts, with focus formation, heterogeneous division, and a cell cycle of approximately 40 h. Chromosome 8 trisomy, present in 60% of the cells, was the most frequent cytogenetic alteration. These data lead us to propose a multifactorial triggering of gastric cancer which evolves over multiple stages involving progressive genetic changes and clonal expansion.