170 resultados para genetic drift
Resumo:
Random amplified polymorphic DNA (RAPD) analysis technique was undertaken in Aedes albopictus populations from three states in Brazil, Rio de Janeiro (RJ), Minas Gerais (MG) and Pernambuco (PE), to estimate the level of genetic variability and levels of genetic exchange between populations. Allele and genotype frequencies were measured on 47 RAPD loci. Average observed heterozigosity (Ho) ranged from 0.282 in MG to 0.355 in Casa Forte (PE) population. Genetic distances estimates indicated that RJ and MG were more genetically similar than populations from PE. Genetic variation observed in local Brazilian populations was attributed to genetic drift associated with restricted gene flow in recently established populations.
Resumo:
Previous studies have reported genetic differences between wild-caught sylvatic, domestic and laboratory pop-ulations of several Triatominae species. The differences between sylvatic and laboratory colonies parallel are similar to the differences observed between sylvatic and domestic populations. Laboratory colonies are frequently used as references for field populations, but the consequences of founder events on the genetic makeup of laboratory or domestic populations are rarely quantified. Our goal was to quantify the genetic change in Rhodnius pallescens populations artificially submitted to founder effects via laboratory colonization. We compared the genetic makeup of two sylvatic populations and their laboratory descendants using a panel of 10 microsatellite markers. Both sylvatic populations were initially collected from palm trees, but the colonies differed in the number of founder insects and amount of time kept in the laboratory. We evaluated allelic polymorphism, differences between expected and observed heterozygosity, estimates of population differentiation (Fst) and inbreeding (Fis, Fit) and cluster analyses based on Nei's distances. We found a unique genetic structure for each sample population, with significant differentiation between the field insects and each of the laboratory generations. These analyses showed strong founder effects and showed that genetic drift had led to a genetic equilibrium over several generations of isolation. Our results suggest that laboratory colonies of R. pallescens have a different genetic structure than their wild relatives and similar processes likely affect other Triatominae laboratory stocks.
Resumo:
Hancornia speciosa Gomes is a fruit tree native from Brazil that belongs to Apocinaceae family, and is popularly known as Mangabeira. Its fruits are widely consumed raw or processed as fruit jam, juices and ice creams, which have made it a target of intense exploitation. The extractive activities and intense human activity on the environment of natural occurrence of H. speciosa has caused genetic erosion in the species and little is known about the ecology or genetic structure of natural populations. The objective of this research was the evaluation of the genetic diversity and genetic structure of H. speciosa var. speciosa. The genetic variability was assessed using 11 allozyme loci with a sample of 164 individuals distributed in six natural populations located in the States of Pernambuco and Alagoas, Northeastern Brazil. The results showed a high level of genetic diversity within the species (e= 0.36) seeing that the most of the genetic variability of H. speciosa var. speciosa is within its natural populations with low difference among populations ( or = 0.081). The inbreeding values within ( = -0.555) and among populations ( =-0.428) were low showing lacking of endogamy and a surplus of heterozygotes. The estimated gene flow ( m ) was high, ranging from 2.20 to 13.18, indicating to be enough to prevent the effects of genetic drift and genetic differentiation among populations. The multivariate analyses indicated that there is a relationship between genetic and geographical distances, which was confirmed by a spatial pattern analysis using Mantel test (r = 0.3598; p = 0.0920) with 1000 random permutations. The high genetic diversity index in these populations indicates potential for in situ genetic conservation.
Resumo:
O presente trabalho não tem por fim discutir exaustivamente os fatos conhecidos e as hipóteses até hoje formuladas sobre o mecanismo da evolução. Êle apresenta apenas um resumo de alguns pontos, sem entrar numa discussão detalhada da literatura, com o fim de por em relevo principalmente os métodos como podem aparecer expontaneamente novos caracteres. As nossas considerações servem como uma introdução para alguns trabalhos experimentais, que serão publicados a seguir. A) - Conhecemos até agora os seguintes modos para a obtenção de novos caracteres fenotipos: 1) - Mutação gênica. 2) - Alteração citológica como poliploidia, polisomia e aberrações na estrutura cromossômica. 3) - Recombinação gênica, ou pela combinação de efeitos específicos de gens determinadores, ou pela combinação de fatores complementares ou principalmente pela mudança no conjunto dos modificadores ("Modifier chift"). A existência deste último modo, comprovado numa série de experiências, pode ter dois efeitos : alterar a base genética de certos caracteres, sem provocar novos efeitos fenotípicos, ou então provocar novas ações fenotípicas de determinados gens. Com respeito à fisiologia do gen, não pode haver dúvida que o conjunto dos modificadores é capaz de alterar a sua ação, provocando novos efeitos e cancelando outros. B) - As duas principais modalidades de aumentar a freqüência dos novos caracteres são: 1) - Seleção natural. 2) - A flutuação das freqüências ou seleção flutuante ("genetic drift"). C) - Finalmente, discutimos rapidamente os processos indispensáveis para completar o processo de evolução : os métodos de isolamento que garantem a manutenção dos novos fenotipos.
Resumo:
This paper deals with problems on population genetics in Hymenoptera and particularly in social Apidae. 1) The studies on populations of Hymenoptera were made according to the two basic types of reproduction: endogamy and panmixia. The populations of social Apinae have a mixed method of reproduction with higher percentage of panmixia and a lower of endogamy. This is shown by the following a) males can enter any hive in swarming time; b) males of Meliponini are expelled from hives which does not need them, and thus, are forced to look for some other place; c) Meliponini males were seen powdering themselves with pollen, thus becoming more acceptable in any other hive. The panmixia is not complete owing to the fact that the density of the breeding population as very low, even in the more frequent species as low as about 2 females and 160 males per reproductive area. We adopted as selection values (or survival indices) the expressions according to Brieger (1948,1950) which may be summarised as follows; a population: p2AA + ²pq Aa + q2aa became after selection: x p2AA + 2pq Aa + z q²aa. For alge-braics facilities Brieger divided the three selective values by y giving thus: x/y p2 AA + y/y 2 pq Aa + z/y q²aa. He called x/y of RA and z/y of Ra, that are survival or selective index, calculated in relation to the heterozygote. In our case all index were calculated in relation to the heterozygote, including the ones for haploid males; thus we have: RA surveval index of genotype AA Ra surveval index of genotype aa R'A surveval index of genotype A R'a surveval index of genotype a 1 surveval index of genotype Aa The index R'A ande R'a were equalized to RA and Ra, respectively, for facilities in the conclusions. 2) Panmitic populations of Hymenoptera, barring mutations, migrations and selection, should follow the Hardy-Weinberg law, thus all gens will be present in the population in the inicial frequency (see Graphifc 1). 3) Heterotic genes: If mutation for heterotic gene ( 1 > RA > Ra) occurs, an equilibrium will be reached in a population when: P = R A + Ra - 2R²a _____________ (9) 2(R A + Ra - R²A - R²a q = R A + Ra - 2R²A _____________ (10) 2(R A + Ra - R²A - R²a A heterotic gene in an hymenopteran population may be maintained without the aid of new mutation only if the survival index of the most viable mutant (RA) does not exced the limiting value given by the formula: R A = 1 + √1+Ra _________ 4 If RA has a value higher thah the one permitted by the formula, then only the more viable gene will remain present in the population (see Graphic 10). The only direct proof for heterotic genes in Hymenoptera was given by Mackensen and Roberts, who obtained offspring from Apis mellefera L. queens fertilized by their own sons. Such inbreeding resulted in a rapid loss of vigor the colony; inbred lines intercrossed gave a high hybrid vigor. Other fats correlated with the "heterosis" problem are; a) In a colony M. quadrifasciata Lep., which suffered severely from heat, the percentage of deths omong males was greater .than among females; b) Casteel and Phillips had shown that in their samples (Apis melifera L). the males had 7 times more abnormalities tian the workers (see Quadros IV to VIII); c) just after emerging the males have great variation, but the older ones show a variation equal to that of workers; d) The tongue lenght of males of Apis mellifera L., of Bombus rubicundus Smith (Quadro X), of Melipona marginata Lep. (Quadro XI), and of Melipona quadrifasciata Lep. Quadro IX, show greater variationthan that of workers of the respective species. If such variation were only caused by subviables genes a rapid increasse of homozigoty for the most viable alleles should be expected; then, these .wild populations, supposed to be in equilibrium, could .not show such variability among males. Thus we conclude that heterotic genes have a grat importance in these cases. 4) By means of mathematical models, we came to the conclusion tht isolating genes (Ra ^ Ra > 1), even in the case of mutations with more adaptability, have only the opor-tunity of survival when the population number is very low (thus the frequency of the gene in the breeding population will be large just after its appearence). A pair of such alleles can only remain present in a population when in border regions of two races or subspecies. For more details see Graphics 5 to 8. 5) Sex-limited genes affecting only females, are of great importance toHymenoptera, being subject to the same limits and formulas as diploid panmitic populations (see formulas 12 and 13). The following examples of these genes were given: a) caste-determining genes in the genus Melipona; b) genes permiting an easy response of females to differences in feeding in almost all social Hymenoptera; c) two genes, found in wild populations, one in Trigona (Plebéia) mosquito F. SMITH (quadro XII) and other in Melipona marginata marginata LEP. (Quadro XIII, colonies 76 and 56) showing sex-limited effects. Sex-limited genes affecting only males do not contribute to the plasticity or genie reserve in hymenopteran populations (see formula 14). 6) The factor time (life span) in Hymenoptera has a particular importance for heterotic genes. Supposing one year to be the time unit and a pair of heterotic genes with respective survival indice equal to RA = 0, 90 and Ra = 0,70 to be present; then if the life time of a population is either one or two years, only the more viable gene will remain present (see formula 11). If the species has a life time of three years, then both alleles will be maintained. Thus we conclude that in specis with long lif-time, the heterotic genes have more importance, and should be found more easily. 7) The colonies of social Hymenoptera behave as units in competition, thus in the studies of populations one must determine the survival index, of these units which may be subdivided in indice for egg-laying, for adaptive value of the queen, for working capacity of workers, etc. 8) A study of endogamic hymenopteran populations, reproduced by sister x brother mating (fig. 2), lead us to the following conclusions: a) without selection, a population, heterozygous for one pair of alleles, will consist after some generations (theoretically after an infinite number of generation) of females AA fecundated with males A and females aa fecundated with males a (see Quadro I). b) Even in endogamic population there is the theoretical possibility of the presence of heterotic genes, at equilibrium without the aid of new mutations (see Graphics 11 and 12), but the following! conditions must be satisfied: I - surveval index of both homozygotes (RA e Ra) should be below 0,75 (see Graphic 13); II - The most viable allele must riot exced the less viable one by more than is permited by the following formula (Pimentel Gomes 1950) (see Gra-fic 14) : 4 R5A + 8 Ra R4A - 4 Ra R³A (Ra - 1) R²A - - R²a (4 R²a + 4 Ra - 1) R A + 2 R³a < o Considering these two conditions, the existance of heterotic genes in endogamic populations of Hymenoptera \>ecames very improbable though not - impossible. 9) Genie mutation offects more hymenopteran than diploid populations. Thus we have for lethal genes in diploid populations: u = q2, and in Hymenoptera: u = s, being u the mutation ratio and s the frequency of the mutant in the male population. 10) Three factors, important to competition among species of Meliponini were analysed: flying capacity of workers, food gathering capacity of workers, egg-laying of the queen. In this connection we refer to the variability of the tongue lenght observed in colonies from several localites, to the method of transporting the pollen in the stomach, from some pots (Melliponi-ni storage alveolus) to others (e. g. in cases of pillage), and to the observation that the species with the most populous hives are almost always the most frequent ones also. 11) Several defensive ways used for Meliponini to avoid predation are cited, but special references are made upon the camouflage of both hive (fig. 5) and hive entrance (fig. 4) and on the mimetism (see list in page ). Also under the same heading we described the method of Lestrimelitta for pillage. 12) As mechanisms important for promoting genetic plasticity of hymenopteran species we cited: a) cytological variations and b) genie reserve. As to the former, duplications and numerical variations of chromosomes were studied. Diprion simile ATC was cited as example for polyploidy. Apis mellife-ra L. (n = 16) also sugests polyploid origen since: a) The genus Melipona, which belongs to a" related tribe, presents in all species so far studied n = 9 chromosomes and b) there occurs formation of dyads in the firt spermatocyte division. It is su-gested that the origin of the sex-chromosome of Apis mellifera It. may be related to the possible origin of diplo-tetraploidy in this species. With regards to the genie reserve, several possible types of mutants were discussed. They were classified according to their survival indices; the heterotic and neutral mutants must be considered as more important for the genie reserve. 13) The mean radius from a mother to a daghter colony was estimated as 100 meters. Since the Meliponini hives swarm only once a year we may take 100 meters a year as the average dispersion of female Meliponini in ocordance to data obtained from Trigona (tetragonisca) jaty F. SMITH and Melipona marginata LEP., while other species may give different values. For males the flying distance was roughly estimated to be 10 times that for females. A review of the bibliography on Meliponini swarm was made (pg. 43 to 47) and new facts added. The population desity (breeding population) corresponds in may species of Meliponini to one male and one female per 10.000 square meters. Apparently the males are more frequent than the females, because there are sometimes many thousands, of males in a swarm; but for the genie frequency the individuals which have descendants are the ones computed. In the case of Apini and Meliponini, only one queen per hive and the males represented by. the spermatozoos in its spermateca are computed. In Meliponini only one male mate with the queen, while queens of Apis mellijera L. are fecundated by an average of about 1, 5 males. (Roberts, 1944). From the date cited, one clearly sees that, on the whole, populations of wild social bees (Meliponini) are so small that the Sewall Wright effect may become of great importance. In fact applying the Wright's formula: f = ( 1/aN♂ + 1/aN♀) (1 - 1/aN♂ + 1/aN♀) which measures the fixation and loss of genes per generation, we see that the fixation or loss of genes is of about 7% in the more frequent species, and rarer species about 11%. The variation in size, tergite color, background color, etc, of Melipona marginata Lep. is atributed to this genetic drift. A detail, important to the survival of Meliponini species, is the Constance of their breeding population. This Constance is due to the social organization, i. e., to the care given to the reproductive individuals (the queen with its sperm pack), to the way of swarming, to the food storage intended to control variations of feeding supply, etc. 14) Some species of the Meliponini are adapted to various ecological conditions and inhabit large geographical areas (e. g. T. (Tetragonisca jaty F. SMITH), and Trigona (Nanno-trigona testaceicornis LEP.) while others are limited to narrow regions with special ecological conditions (e. g. M. fuscata me-lanoventer SCHWARZ). Other species still, within the same geographical region, profit different ecological conditions, as do M. marginata LEP. and M. quadrifasciata LEP. The geographical distribution of Melipona quadrifasciata LEP. is different according to the subspecies: a) subsp anthidio-des LEP. (represented in Fig. 7 by black squares) inhabits a region fron the North of the S. Paulo State to Northeastern Brazil, ,b) subspecies quadrifasciata LEP., (marked in Fig. 7 with black triangles) accurs from the South of S. Paulo State to the middle of the State of Rio Grande do Sul (South Brazil). In the margined region between these two areas of distribution, hi-brid colonies were found (Fig. 7, white circles); they are shown with more details in fig. 8, while the zone of hybridization is roughly indicated in fig. 9 (gray zone). The subspecies quadrifasciata LEP., has 4 complete yellow bands on the abdominal tergites while anthidioides LEP. has interrupted ones. This character is determined by one or two genes and gives different adaptative properties to the subspecies. Figs. 10 shows certains meteorological isoclines which have aproximately the same configuration as the limits of the hybrid zone, suggesting different climatic adaptabilities for both genotypes. The exis-tance of a border zone between the areas of both subspecies, where were found a high frequency of hybrids, is explained as follows: being each subspecies adapted to a special climatic zone, we may suppose a poor adaptation of either one in the border region, which is also a region of intermediate climatic conditions. Thus, the hybrids, having a combination of the parent qualities, will be best adapted to the transition zone. Thus, the hybrids will become heterotic and an equilibrium will be reached with all genotypes present in the population in the border region.
Resumo:
Holymenia clavigera (Herbst, 1784) and Anisoscelis foliacea marginella (Dallas, 1852) (Hemiptera, Coreidae) present a remarkable similarity regarding egg and nymphal morphology. On the contrary, their adult stages are remarkably different. This study describes and compares the immature stages of these two coreid species. Excepting for the last instar and the shape of the hind tibia from third to last instar, nymphs of both species were identical in their gross morphologies and ultrastructures. However, H. clavigera was significantly larger than A. foliacea marginella in all stages. Thus, we suggest that these species may have evolved through evolutionary convergence, parsimony between the immature stages after speciation, Müllerian mimicry or genetic drift.
Resumo:
Fabry disease is an X-linked lysosomal disorder due to a-galactosidase A deficiency that causes storage of globotriaosylceramide. The gene coding for this lysosomal enzyme is located on the long arm of the X chromosome, in region Xq21.33-Xq22. Disease progression leads to vascular disease secondary to involvement of kidney, heart and the central nervous system. Detection of female carriers based solely on enzyme assays is often inconclusive. Therefore, mutation analysis is a valuable tool for diagnosis and genetic counseling. Many mutations of the a-galactosidase A gene have been reported with high genetic heterogeneity, being most mutations private found in only one family. The disease is panethnic, and estimates of incidence range from about 1 in 40,000 to 60,000 males. Our objective was to describe the analysis of 6 male and 7 female individuals belonging to 4 different Fabry disease families by automated sequencing of the seven exons of the a-galactosidase gene. Sequencing was performed using PCR fragments for each exon amplified from DNA extracted from peripheral blood. Three known mutations and one previously described in another Brazilian family were detected. Of 7 female relatives studied, 4 were carriers. Although the present study confirms the heterogeneity of mutations in Fabry disease, the finding of the same mutation previously detected in another Fabry family from our region raises the possibility of some founder effect, or genetic drift. Finally, the present study highlights the importance of molecular analysis for carrier detection and genetic counseling.
Resumo:
Backcrossing has been little used in cacao breeding, particularly due to the long time required to transfer genes and recover the genetic background of the recurrent parent. The objective of this study was to select individuals, resulting from the backcross CEPEC-42 x SIC-19, genetically related to the recurrent parent SIC-19 by using RAPD molecular markers, among those with resistance to witches' broom. Of the 31 plants that clustered with SIC-19, 18 from the replanted material remained free of the disease in the field, with good vegetative aspect and, therefore can be used for backcross to reach the desired objective.
Resumo:
In order to select superior hybrids for the concentration of favorable alleles for resistance to papaya black spot, powdery mildew and phoma spot, 67 hybrids were evaluated in two seasons, in 2007, in a randomized block design with two replications. Genetic gains were estimated from the selection indices of Smith & Hazel, Pesek & Baker, Williams, Mulamba & Mock, with selection intensity of 22.39%, corresponding to 15 hybrids. The index of Mulamba & Mock showed gains more suitable for the five traits assessed when it was used the criterion of economic weight tentatively assigned. Together, severity of black spot on leaves and on fruits, characteristics considered most relevant to the selection of resistant materials, expressed percentage gain of -44.15%. In addition, there were gains for other characteristics, with negative predicted selective percentage gain. The results showed that the index of Mulamba & Mock is the most efficient procedure for simultaneous selection of papaya hybrid resistant to black spot, powdery mildew and phoma spot.
Resumo:
Genetic diversity in a collection of 64 sugar apple accessions collected from different municipalities in northern Minas Gerais was assessed by RAPD analysis. Using 20 selected RAPD primers 167 fragments were generated, of which 48 were polymorphic (28.7%) producing an average of 2.4 polymorphic fragments per primer. Low percentage of polymorphism (< 29%) was observed by using the set of primers indicating low level of genetic variation among the 64 accessions evaluated. Genetic relationships were estimated using Jaccard's coefficient of similarity. Accessions from different municipalities clustered together indicating no correlation between molecular grouping and geographical origin. The dendrogram revealed five clusters. The first cluster grouped C19 and G29 accessions collected from the municipalities of Verdelândia and Monte Azul, respectively. The second cluster grouped G16 and B11 accessions collected from the municipalities of Monte Azul and Coração de Jesus, respectively. The remaining accessions were grouped in three clusters, with 8, 15 and 37 accessions, respectively. In summary, RAPD showed a low percentage of polymorphism in the germplasm collection.
Resumo:
Understanding the genetic variability of a species is crucial for the progress of a genetic breeding program and requires characterization and evaluation of germplasm. This study aimed to characterize and evaluate 101 tomato subsamples of the Salad group (fresh market) and two commercial controls, one of the Salad group (cv. Fanny) and another of the Santa Cruz group (cv. Santa Clara). Four experiments were conducted in a randomized block design with three replications and five plants per plot. The joint analysis of variance was performed and characteristics with significant complex interaction between control and experiment were excluded. Subsequently, the multicollinearity diagnostic test was carried out and characteristics that contributed to severe multicollinearity were excluded. The relative importance of each characteristics for genetic divergence was calculated by the Singh's method (Singh, 1981), and the less important ones were excluded according to Garcia (1998). Results showed large genetic divergence among the subsamples for morphological, agronomic and organoleptic characteristics, indicating potential for genetic improvement. The characteristics total soluble solids, mean number of good fruits per plant, endocarp thickness, mean mass of marketable fruit per plant, total acidity, mean number of unmarketable fruit per plant, internode diameter, internode length, main stem thickness and leaf width contributed little to the genetic divergence between the subsamples and may be excluded in future studies.
Resumo:
Individual cancer susceptibility seems to be related to factors such as changes in oncogenes and tumor suppressor genes expression, and differences in the action of metabolic enzymes and DNA repair regulated by specific genes. Epidemiological studies on genetic polymorphisms of human xenobiotics metabolizing enzymes and cancer have revealed low relative risks. Research considering genetic polymorphisms prevalence jointly with environmental exposures could be relevant for a better understanding of cancer etiology and the mechanisms of carcinogenesis and also for new insights on cancer prognosis. This study reviews the approaches of molecular epidemiology in cancer research, stressing case-control and cohort designs involving genetic polymorphisms, and factors that could introduce bias and confounding in these studies. Similarly to classical epidemiological research, genetic polymorphisms requires considering aspects of precision and accuracy in the study design.
Resumo:
The Brazilian National Regulatory Agency for Private Health Insurance and Plans has recently published a technical note defining the criteria for the coverage of genetic testing to diagnose hereditary cancer. In this study we show the case of a patient with a breast lesion and an extensive history of cancer referred to a private service of genetic counseling. The patient met both criteria for hereditary breast and colorectal cancer syndrome screening. Her private insurance denied coverage for genetic testing because she lacks current or previous cancer diagnosis. After she appealed by lawsuit, the court was favorable and the test was performed using next-generation sequencing. A deletion of MLH1 exon 8 was found. We highlight the importance to offer genetic testing using multigene analysis for noncancer patients.
Resumo:
In the present study we report the results of an analysis, based on serotyping, multilocus enzyme electrophoresis (MEE), and ribotyping of N. meningitidis serogroup C strains isolated from patients with meningococcal disease (MD) in Rio Grande do Sul (RS) and Santa Catarina (SC) States, Brazil, as the Center of Epidemiology Control of Ministry of Health detected an increasing of MD cases due to this serogroup in the last two years (1992-1993). We have demonstrated that the MD due to N.meningitidis serogroup C strains in RS and SC States occurring in the last 4 years were caused mainly by one clone of strains (ET 40), with isolates indistinguishable by serogroup, serotype, subtype and even by ribotyping. One small number of cases that were not due to an ET 40 strains, represent closely related clones that probably are new lineages generated from the ET 40 clone referred as ET 11A complex. We have also analyzed N.meningitidis serogroup C strains isolated in the greater São Paulo in 1976 as representative of the first post epidemic year in that region. The ribotyping method, as well as MEE, could provide useful information about the clonal characteristics of those isolates and also of strains isolated in south Brazil. The strains from 1976 have more similarity with the actual endemic than epidemic strains, by the ribotyping, sulfonamide sensitivity, and MEE results. In conclusion, serotyping with monoclonal antibodies (C:2b:P1.3), MEE (ET 11 and ET 11A complex), and ribotyping by using ClaI restriction enzyme (Rb2), were useful to characterize these epidemic strains of N.meningitidis related to the increased incidence of MD in different States of south Brazil. It is mostly probable that these N.meningitidis serogroup C strains have poor or no genetic corelation with 1971-1975 epidemic serogroup C strains. The genetic similarity of members of the ET 11 and ET 11A complex were confirmed by the ribotyping method by using three restriction endonucleases.
Resumo:
In the present study we report the results of an analysis, based on ribotyping of Corynebacterium diphtheriae intermedius strains isolated from a 9 years old child with clinical diphtheria and his 5 contacts. Quantitative analysis of RFLPs of rRNA was used to determine relatedness of these 7 C.diphtheriae strains providing support data in the diphtheria epidemiology. We have also tested those strains for toxigenicity in vitro by using the Elek's gel diffusion method and in vivo by using cell culture method on cultured monkey kidney cell (VERO cells). The hybridization results revealed that the 5 C.diphtheriae strains isolated from contacts and one isolated from the clinical case (nose case strain) had identical RFLP patterns with all 4 restriction endonucleases used, ribotype B. The genetic distance from this ribotype and ribotype A (throat case strain), that we initially assumed to be responsible for the illness of the patient, was of 0.450 showing poor genetic correlation among these two ribotypes. We found no significant differences concerned to the toxin production by using the cell culture method. In conclusion, the use of RFLPs of rRNA gene was successful in detecting minor differences in closely related toxigenic C.diphtheriae intermedius strains and providing information about genetic relationships among them.