38 resultados para electromechanical impedance
Resumo:
Mechanical impedance of clayey and gravelly soils is often needed to interpret experimental results from tillage and other field experiments. Its measurement is difficult with manual and hydraulic penetrometers, which often bend or break in such soils. The purpose of this study was to evaluate the feasibility of a hand-operated "Stolf" impact penetrometer to measure mechanical impedance (soil resistance). The research was conducted in Raleigh, North Carolina, USA (35º 45'N, 78º 42'W, elevation 75 m). Corn was planted on April 19, 1991. Penetrometer measurements were taken on May 10, 1991, in 5 cm intervals to 60 cm at 33 locations on a transect perpendicular to the corn rows in each of four tillage treatments. The data permitted three-dimensional displays showing how mechanical impedance changed with depth and distance along the transect. The impact penetrometer proved to be a useful tool to collect quantitative mechanical impedance data on "hard" clayey and/or gravelly soils which previously were difficult to reliably quantify.
Resumo:
This paper concerns the development of drives that use electromechanical rotative motor systems. It is proposed an experimental drive test structure integrated to simulation softwares. The objective of this work is to show that an affordable model validation procedure can be obtained by combining a precision data acquisition with well tuned state-of-the-art simulation packages. This is required for fitting, in the best way, a drive to its load or, inversely, to adapt loads to given drive characteristics.
Resumo:
The assessment of fluid volume in neonates by a noninvasive, inexpensive, and fast method can contribute significantly to increase the quality of neonatal care. The objective of the present study was to calibrate an acquisition system and software to estimate the bioelectrical impedance parameters obtained by a method of bioelectrical impedance spectroscopy based on step response and to develop specific equations for the neonatal population to determine body fluid compartments. Bioelectric impedance measurements were performed by a laboratory homemade instrument. The volumes were estimated in a clinical study on 30 full-term neonates at four different times during the first month of life. During the first 24 hours of life the total body water, extracellular water and intracellular water were 2.09 ± 0.25, 1.20 ± 0.19, and 0.90 ± 0.25 liters, respectively. By the 48th hour they were 1.87 ± 0.27, 1.08 ± 0.17, and 0.79 ± 0.21 liters, respectively. On the 10th day they were 2.02 ± 0.25, 1.29 ± 0.21, and 0.72 ± 0.14 liters, respectively, and after 1 month they were 2.34 ± 0.27, 1.62 ± 0.20, and 0.72 ± 0.13 liters, respectively. The behavior of the estimated volume was correlated with neonatal body weight changes, leading to a better interpretation of such changes. In conclusion, this study indicates the feasibility of bioelectrical impedance spectroscopy as a method to help fluid administration in intensive care neonatal units, and also contribute to the development of new equations to estimate neonatal body fluid contents.
Resumo:
The objectives of the present study were to describe and compare the body composition variables determined by bioelectrical impedance (BIA) and the deuterium dilution method (DDM), to identify possible correlations and agreement between the two methods, and to construct a linear regression model including anthropometric measures. Obese adolescents were evaluated by anthropometric measures, and body composition was assessed by BIA and DDM. Forty obese adolescents were included in the study. Comparison of the mean values for the following variables: fat body mass (FM; kg), fat-free mass (FFM; kg), and total body water (TBW; %) determined by DDM and by BIA revealed significant differences. BIA overestimated FFM and TBW and underestimated FM. When compared with data provided by DDM, the BIA data presented a significant correlation with FFM (r = 0.89; P < 0.001), FM (r = 0.93; P < 0.001) and TBW (r = 0.62; P < 0.001). The Bland-Altman plot showed no agreement for FFM, FM or TBW between data provided by BIA and DDM. The linear regression models proposed in our study with respect to FFM, FM, and TBW were well adjusted. FFM obtained by DDM = 0.842 x FFM obtained by BIA. FM obtained by DDM = 0.855 x FM obtained by BIA + 0.152 x weight (kg). TBW obtained by DDM = 0.813 x TBW obtained by BIA. The body composition results of obese adolescents determined by DDM can be predicted by using the measures provided by BIA through a regression equation.
Resumo:
Malnutrition constitutes a major public health concern worldwide and serves as an indicator of hospitalized patients’ prognosis. Although various methods with which to conduct nutritional assessments exist, large hospitals seldom employ them to diagnose malnutrition. The aim of this study was to understand the prevalence of child malnutrition at the University Hospital of the Ribeirão Preto Medical School, University of São, Brazil. A cross-sectional descriptive study was conducted to compare the nutritional status of 292 hospitalized children with that of a healthy control group (n=234). Information regarding patients’ weight, height, and bioelectrical impedance (i.e., bioelectrical impedance vector analysis) was obtained, and the phase angle was calculated. Using the World Health Organization (WHO) criteria, 35.27% of the patients presented with malnutrition; specifically, 16.10% had undernutrition and 19.17% were overweight. Classification according to the bioelectrical impedance results of nutritional status was more sensitive than the WHO criteria: of the 55.45% of patients with malnutrition, 51.25% exhibited undernutrition and 4.20% were overweight. After applying the WHO criteria in the unpaired control group (n=234), we observed that 100.00% of the subjects were eutrophic; however, 23.34% of the controls were malnourished according to impedance analysis. The phase angle was significantly lower in the hospitalized group than in the control group (P<0.05). Therefore, this study suggests that a protocol to obtain patients’ weight and height must be followed, and bioimpedance data must be examined upon hospital admission of all children.
Resumo:
INTRODUCTION: The septal position is an alternative site for cardiac pacing (CP) that is potentially less harmful to cardiac function. METHODS: Patients with Chagas disease without heart failure submitted to permanent pacemaker (PP) implantation at the Clinics Hospital of the Triângulo Mineiro Federal University (UFTM), were selected from February 2009 to February 2010. The parameters analyzed were ventricular remodeling, the degree of electromechanical dyssynchrony (DEM), exercise time and VO2 max during exercise testing (ET) and functional class (NYHA). Echocardiography was performed 24 to 48h following implantation and after one year follow-up. The patients were submitted to ET one month postprocedure and at the end of one year. RESULTS: Thirty patients were included. Patient mean age was 59±13 years-old. Indication for PP implantation was complete atrioventricular (AV) block in 22 (73.3%) patients and 2nd degree AV block in the other eight (26.7%). All patients were in NYHA I and no changes occurred in the ET parameters. No variations were detected in echocardiographic remodeling measurements. Intraventricular dyssynchrony was observed in 46.6% of cases and interventricular dyssynchrony in 33.3% of patients after one year. CONCLUSIONS: The findings of this work suggest that there is not significant morphological and functional cardiac change following pacemaker implantation in septal position in chagasic patients with normal left ventricular function after one year follow-up. Thus, patients may remain asymptomatic, presenting maintenance of functional capacity and no left ventricular remodeling.
Resumo:
Introduction Visceral leishmaniasis (VL) is caused by the intracellular protozoan Leishmania donovani complex. VL may be asymptomatic or progressive and is characterized by fever, anemia, weight loss and the enlargement of the spleen and liver. The nutritional status of the patients with VL is a major determinant of the progression, severity and mortality of the disease, as it affects the clinical progression of the disease. Changes in lipoproteins and plasma proteins may have major impacts in the host during infection. Thus, our goal was evaluate the serum total cholesterol, high-density lipoprotein (HDL), low-density lipoprotein (LDL), triglycerides, glucose, albumin, globulin and total protein levels, as well as the body composition, of VL patients before and after treatment. Methods Nutritional evaluation was performed using the bioelectrical impedance analysis (BIA) to assess body composition. Biochemical data on the serum total cholesterol, HDL, LDL, triglycerides, glucose, albumin, globulin and total protein were collected from the medical charts of the patients. Results BIA indicated that both pre-treatment and post-treatment patients exhibited decreased phase angles compared to the controls, which is indicative of disease. Prior to treatment, the patients exhibited lower levels of total body water compared to the controls. Regarding the biochemical evaluation, patients with active VL exhibited lower levels of total cholesterol, HDL, LDL and albumin and higher triglyceride levels compared to patients after treatment and the controls. Treatment increased the levels of albumin and lipoproteins and decreased the triglyceride levels. Conclusions Our results suggest that patients with active VL present biochemical and nutritional changes that are reversed by treatment.
Resumo:
Growth hormone (GH) and glutamine (GLN) are considered bowel trophic factors and are used experimentally after bowel resection. Their clinical uses in short bowel syndrome (SBS) are still not standardized. It is of interest to verify metabolic, nutritional and side effects of the association of GH and GLN in SBS. Three patients, 39 (A), 33 (B), and 01 years old (C) underwent bowel resection with jejunum anastomosis 15 cm (A) and 60 cm (B) distant from the Treitz angle, and 40 cm (C) preserving the ileo cecal valve. GH Saizen (Serono - A), Genotropin (Pharmacia - B), and Norditropin (Novonordisk C) were administered in doses of 0.14 mg /kg/day. GLN (0.4 g/kg/day) was given orally for 10 days (A), 30 days (B) and 60 days to patient C (0.28 g/kg/day). Central TPN and adequate oral diet was administered according to the bowel adaptation phase. On the first day after beginning treatment patient A exhibited symptoms of hypoglycemia. There were no other side effects. After treatment, body weight was higher and analysis by bioelectrical impedance showed more lean mass and less fat mass compared to pre-treatment measurements. Nitrogen retention was progressively higher with treatment. Simultaneous treatment with GH and GLN does not cause significant side effects, and is associated with a favorable distribution of the body compartments and nitrogen retention in patients with the short bowel syndrome.
Resumo:
The objective of this study was to differentiate benign ovarian tumors from malignant ones before surgery using color and pulsed Doppler sonography, and to compare results obtained before and after use of contrast medium, thereby verifying whether contrast results in an improvement in the diagnostic sensitivity. METHODS: Sixty two women (mean age 49.9 years) with ovarian tumors were studied, 45 with benign and 17 with malignant tumors. All women underwent a transvaginal color Doppler ultrasonographic exam. A study of the arterial vascular flow was made in all tumor areas, as well as an impedance evaluation of arterial vascular flow using the resistance index. RESULT: Localization of the vessels in the tumor revealed a greater proportion of malignant tumors with detectable internal vascular flows (64%) than benign tumors with such flows (22%). There was a considerable overlap of these findings. The use of contrast identified a greater number of vessels with confirmation in the totality of tumors, but did not improve the Doppler capacity in tumoral differentiation. Malignant tumors presented lower values of resistance index than the benign ones, whether or not contrast was used. The cutoff value for resistance index that better maximized the Doppler sensitivity and specificity was 0.55. Through this value, an increase of the sensitivity after contrast use was obtained, varying from 47% to 82%, while specificity remained statistically unchanged. CONCLUSION: Although the injection of a microbubble agent improved the sensitivity of the method detecting vascularization of tumors, a positive finding for vascularization by this method was not clinically useful in the differentiation of benign and malignant ovarian tumors.
Resumo:
Body composition analysis is relevant to characterize the nutritional requirements and finishing phase of fish. The aim of this study was to investigate the relationship between ichthyometric (weight, total and standard length, density and yields), bromatological (fat, protein, ash and water content) and bioelectrical-impedance-analysis (BIA) (resistance, reactance, phase angle and composition indexes) variables in the hybrid tambatinga (Colossoma macropomum × Piaractus brachypomus). In a non-fertilized vivarium, 520 juveniles were housed and fed commercial rations. Then, 136 days after hatching (DAH), 15 fish with an average weight of 37.69 g and average total length of 12.96 cm were randomly chosen, anesthetized (eugenol) and subjected to the first of fourteen fortnightly assessments (BIA and biometry). After euthanasia, the following parts were weighed: whole carcass with the head, fillet, and skin (WC); fillet with skin (FS); and the remainder of the carcass with the head (CH). Together, FS and CH were ground and homogenized for the bromatological analyses. Estimates of the body composition and yields of tambatinga, with models including ichthyometric and BIA variables, showed correlation coefficients ranging from 0.81 (for the FS yield) to 1,00 (for the total ash). Similarly, models that included only BIA variables had correlation coefficients ranging from 0.81 (FS and CH yields) to 0.98 (for the total ash). Therefore, in tambatinga, the BIA technique allows the estimation of the yield of the fillet with skin and the body composition (water content, fat, ash, and protein). The best models combine ichthyometric and BIA variables.
Resumo:
OBJECTIVE: To analyze the early and late results of cardiopulmonary resuscitation in a cardiology hospital and to try to detect prognostic determinants of both short- and long-term survival. METHODS: A series of 557 patients who suffered cardiorespiratory arrest (CRA) at the Dante Pazzanese Cardiology Institute over a period of 5 years was analyzed to examine factors predicting successful resuscitation and long-term survival. RESULTS: Ressuscitation maneuvers were tried in 536 patients; 281 patients (52.4%) died immediately, and 164 patients (30.6%) survived for than 24 hours. The 87 patients who survived for more than 1 month after CRA were compared with nonsurvivors. Coronary disease, cardiomyopathy, and valvular disease had a better prognosis. Primary arrhythmia occurred in 73.5% of the >1-month survivor group and heart failure occurred in 12.6% of this group. In those patients in whom the initial mechanism of CRA was ventricular fibrillation, 33.3% survived for more than 1 month, but of those with ventricular asystole only 4.3% survived. None of the 10 patients with electromechanical dissociation survived. There was worse prognosis in patients included in the extreme age groups (zero to 10 years and 70 years or more). The best results occurred when the cardiac arrest took place in the catheterization laboratories. The worst results occurred in the intensive care unit and the hemodialysis room. CONCLUSION: The results in our series may serve as a helpful guide to physicians with the difficult task of deciding when not to resuscitate or when to stop resuscitation efforts.
Resumo:
Maize root growth is negatively affected by compacted layers in the surface (e.g. agricultural traffic) and subsoil layers (e.g. claypans). Both kinds of soil mechanical impedances often coexist in maize fields, but the combined effects on root growth have seldom been studied. Soil physical properties and maize root abundance were determined in three different soils of the Rolling Pampa of Argentina, in conventionally-tilled (CT) and zero-tilled (ZT) fields cultivated with maize. In the soil with a light Bt horizon (loamy Typic Argiudoll, Chivilcoy site), induced plough pans were detected in CT plots at a depth of 0-0.12 m through significant increases in bulk density (1.15 to 1.27 Mg m-3) and cone (tip angle of 60 º) penetrometer resistance (7.18 to 9.37 MPa in summer from ZT to CT, respectively). This caused a reduction in maize root abundance of 40-80 % in CT compared to ZT plots below the induced pans. Two of the studied soils had hard-structured Bt horizons (clay pans), but in only one of them (silty clay loam Abruptic Argiudoll, Villa Lía site) the expected penetrometer resistance increases (up to 9 MPa) were observed with depth. In the other clay pan soil (silty clay loam Vertic Argiudoll, Pérez Millán site), penetrometer resistance did not increase with depth but reached 14.5 MPa at 0.075 and 0.2 m depth in CT and ZT plots, respectively. However, maize root abundance was stratified in the first 0.2 m at the Villa Lía and Pérez Millán sites. There, the hard Bt horizons did not represent an absolute but a relative mechanical impedance to maize roots, by the observed root clumping through desiccation cracks.
Resumo:
Modern agriculture techniques have a great impact on crops and soil quality, especially by the increased machinery traffic and weight. Several devices have been developed for determining soil properties in the field, aimed at managing compacted areas. Penetrometry is a widely used technique; however, there are several types of penetrometers, which have different action modes that can affect the soil resistance measurement. The objective of this study was to compare the functionality of two penetrometry methods (manual and automated mode) in the field identification of compacted, highly mechanized sugarcane areas, considering the influence of soil water volumetric content (θ) on soil penetration resistance (PR). Three sugarcane fields on a Rhodic Eutrudrox were chosen, under a sequence of harvest systems: one manual harvest (1ManH), one mechanized harvest (1MH) and three mechanized harvests (3MH). The different degrees of mechanization were associated to cumulative compaction processes. An electronic penetrometer was used on PR measurements, so that the rod was introduced into the soil by hand (Manual) and by an electromechanical motor (Auto). The θ was measured in the field with a soil moisture sensor. Results showed an effect of θ on PR measurements and that regression models must be used to correct data before comparing harvesting systems. The rod introduction modes resulted in different mean PR values, where the "Manual" overestimated PR compared to the "Auto" mode at low θ.
Resumo:
Among in situ techniques, the electrochemical quartz crystal microbalance (EQCM) is a powerful tool for the study of electrochemical reactions that produce mass changes in the electrode/solution interface. This review present some systems in which the EQCM combined with classical electrochemical techniques, gives relevant information for understanding the charge transport process at a molecular level. The aim of this review is to do a brief description of experimental arrangements, with emphasis on some special cares that must be considered by the users. Secondly, some chosen electrochemical systems where the technique was successfully applied are discussed. Finally, a brief analysis of electroacoustic impedance experiments was done in order to show when the Sauerbrey equation can be used.
Resumo:
In this work, composites formed from a mixture of V2O5 and polyaniline (PANI) were investigated, for applications as cathode materials for secondary lithium batteries. Electrochemical quartz crystal microbalance (EQCM) data show that charge compensation in the [PANI]0.3V2O5 nanocomposite is achieved predominantly by Li+ migration. However, the charge compensation in the [PANI]V2O5 microcomposite occurs by Li+ and ClO4- transport. Electrochemical Impedance Spectroscopy (EIS) measurements reveal several benefits of nanohybrid formation, including the achievement of shorter ionic diffusion pathways, the higher diffusion rate of the lithium ion and also the higher electronic conductivity, which are responsible for a synergetic effect of the energy storage properties.