89 resultados para RECONSOLIDATION BLOCKADE
Resumo:
Neuromuscular blocking agents (NMBAs) have been widely used to control patients who need to be immobilized for some kind of medical intervention, such as an invasive procedure or synchronism with mechanical ventilation. The purpose of this monograph is to review the pharmacology of the NMBAs, to compare the main differences between the neuromuscular junction in neonates, infants, toddlers and adults, and moreover to discuss their indications in critically ill pediatric patients. Continuous improvement of knowledge about NMBAs pharmacology, adverse effects, and the many other remaining unanswered questions about neuromuscular junction and neuromuscular blockade in children is essential for the correct use of these drugs. Therefore, the indication of these agents in pediatrics is determined with extreme judiciousness. Computorized (Medline 1990-2000) and active search of articles were the mechanisms used in this review.
Resumo:
Background: Obesity is defined by excessive accumulation of body fat relative to lean tissue. Studies during the last few years indicate that cardiac function in obese animals may be preserved, increased or diminished. Objective: Study the energy balance of the myocardium with the hypothesis that the increase in fatty acid oxidation and reduced glucose leads to cardiac dysfunction in obesity. Methods: 30-day-old male Wistar rats were fed standard and hypercaloric diet for 30 weeks. Cardiac function and morphology were assessed. In this paper was viewed the general characteristics and comorbities associated to obesity. The structure cardiac was determined by weights of the heart and left ventricle (LV). Myocardial function was evaluated by studying isolated papillary muscles from the LV, under the baseline condition and after inotropic and lusitropic maneuvers: myocardial stiffness; postrest contraction; increase in extracellular Ca2+ concentration; change in heart rate and inhibitor of glycolytic pathway. Results: Compared with control group, the obese rats had increased body fat and co-morbities associated with obesity. Functional assessment after blocking iodoacetate shows no difference in the linear regression of DT, however, the RT showed a statistically significant difference in behavior between the control and the obese group, most notable being the slope in group C. Conclusion: The energy imbalance on obesity did not cause cardiac dysfunction. On the contrary, the prioritization of fatty acids utilization provides protection to cardiac muscle during the inhibition of glycolysis, suggesting that this pathway is fewer used by obese cardiac muscle.
Resumo:
Abstract Background: Studies suggest that statins have pleiotropic effects, such as reduction in blood pressure, and improvement in endothelial function and vascular stiffness. Objective: To analyze if prior statin use influences the effect of renin-angiotensin-aldosterone system inhibitors on blood pressure, endothelial function, and vascular stiffness. Methods: Patients with diabetes and hypertension with office systolic blood pressure ≥ 130 mmHg and/or diastolic blood pressure ≥ 80 mmHg had their antihypertensive medications replaced by amlodipine during 6 weeks. They were then randomized to either benazepril or losartan for 12 additional weeks while continuing on amlodipine. Blood pressure (assessed with ambulatory blood pressure monitoring), endothelial function (brachial artery flow-mediated dilation), and vascular stiffness (pulse wave velocity) were evaluated before and after the combined treatment. In this study, a post hoc analysis was performed to compare patients who were or were not on statins (SU and NSU groups, respectively). Results: The SU group presented a greater reduction in the 24-hour systolic blood pressure (from 134 to 122 mmHg, p = 0.007), and in the brachial artery flow-mediated dilation (from 6.5 to 10.9%, p = 0.003) when compared with the NSU group (from 137 to 128 mmHg, p = 0.362, and from 7.5 to 8.3%, p = 0.820). There was no statistically significant difference in pulse wave velocity (SU group: from 9.95 to 9.90 m/s, p = 0.650; NSU group: from 10.65 to 11.05 m/s, p = 0.586). Conclusion: Combined use of statins, amlodipine, and renin-angiotensin-aldosterone system inhibitors improves the antihypertensive response and endothelial function in patients with hypertension and diabetes.
Resumo:
In Chagas disease, understanding how the immune response controls parasite growth but also leads to heart damage may provide insight into the design of new therapeutic strategies. Tumor necrosis factor-alpha (TNF-α) is important for resistance to acute Trypanosoma cruzi infection; however, in patients suffering from chronic T. cruzi infection, plasma TNF-α levels correlate with cardiomyopathy. Recent data suggest that CD8-enriched chagasic myocarditis formation involves CCR1/CCR5-mediated cell migration. Herein, the contribution of TNF-α, especially signaling through the receptor TNFR1/p55, to the pathophysiology of T. cruzi infection was evaluated with a focus on the development of myocarditis and heart dysfunction. Colombian strain-infected C57BL/6 mice had increased frequencies of TNFR1/p55+ and TNF-α+ splenocytes. Although TNFR1-/- mice exhibited reduced myocarditis in the absence of parasite burden, they succumbed to acute infection. Similar to C57BL/6 mice, Benznidazole-treated TNFR1-/- mice survived acute infection. In TNFR1-/- mice, reduced CD8-enriched myocarditis was associated with defective activation of CD44+CD62Llow/- and CCR5+ CD8+ lymphocytes. Also, anti-TNF-α treatment reduced the frequency of CD8+CCR5+ circulating cells and myocarditis, though parasite load was unaltered in infected C3H/HeJ mice. TNFR1-/- and anti-TNF-α-treated infected mice showed regular expression of connexin-43 and reduced fibronectin deposition, respectively. Furthermore, anti-TNF-α treatment resulted in lower levels of CK-MB, a cardiomyocyte lesion marker. Our results suggest that TNF/TNFR1 signaling promotes CD8-enriched myocarditis formation and heart tissue damage, implicating the TNF/TNFR1 signaling pathway as a potential therapeutic target for control of T. cruzi-elicited cardiomyopathy.
Resumo:
Site-specific regression coefficient values are essential for erosion prediction with empirical models. With the objective to investigate the surface-soilconsolidation factor, Cf, linked to the RUSLE's prior-land-use subfactor, PLU, an erosion experiment using simulated rainfall on a 0.075 m m-1 slope, sandy loam Paleudult soil, was conducted at the Agriculture Experimental Station of the Federal University of Rio Grande do Sul (EEA/UFRGS), in Eldorado do Sul, State of Rio Grande do Sul, Brazil. Firstly, a row-cropped area was excluded from cultivation (March 1995), the existing crop residue removed from the field, and the soil kept clean-tilled the rest of the year (to get a degraded soil condition for the intended purpose of this research). The soil was then conventional-tilled for the last time (except for a standard plot which was kept continuously cleantilled for comparison purposes), in January 1996, and the following treatments were established and evaluated for soil reconsolidation and soil erosion until May 1998, on duplicated 3.5 x 11.0 m erosion plots: (a) fresh-tilled soil, continuously in clean-tilled fallow (unit plot); (b) reconsolidating soil without cultivation; and (c) reconsolidating soil with cultivation (a crop sequence of three corn- and two black oats cycles, continuously in no-till, removing the crop residues after each harvest for rainfall application and redistributing them on the site after that). Simulated rainfall was applied with a Swanson's type, rotating-boom rainfall simulator, at 63.5 mm h-1 intensity and 90 min duration, six times during the two-and-half years of experimental period (at the beginning of the study and after each crop harvest, with the soil in the unit plot being retilled before each rainfall test). The soil-surface-consolidation factor, Cf, was calculated by dividing soil loss values from the reconsolidating soil treatments by the average value from the fresh-tilled soil treatment (unit plot). Non-linear regression was used to fit the Cf = e b.t model through the calculated Cf-data, where t is time in days since last tillage. Values for b were -0.0020 for the reconsolidating soil without cultivation and -0.0031 for the one with cultivation, yielding Cf-values equal to 0.16 and 0.06, respectively, after two-and-half years of tillage discontinuation, compared to 1.0 for fresh-tilled soil. These estimated Cf-values correspond, respectively, to soil loss reductions of 84 and 94 %, in relation to soil loss from the fresh-tilled soil, showing that the soil surface reconsolidated intenser with cultivation than without it. Two distinct treatmentinherent soil surface conditions probably influenced the rapid decay-rate of Cf values in this study, but, as a matter of a fact, they were part of the real environmental field conditions. Cf-factor curves presented in this paper are therefore useful for predicting erosion with RUSLE, but their application is restricted to situations where both soil type and particular soil surface condition are similar to the ones investigate in this study.
Resumo:
Methylated arginine analogues are often used as probes of the effect of nitric oxide; however, their specificity is unclear and seems to be frequently overestimated. This study analyzed the effects of NG-methyl-L-arginine (L-NMMA) on the endothelium-dependent release of vascular superoxide radicals triggered by increased flow. Plasma ascorbyl radical signals measured by direct electron paramagnetic resonance spectroscopy in 25 rabbits increased by 3.8 ± 0.7 nmol/l vs baseline (28.7 ± 1.4 nmol/l, P<0.001) in response to papaverine-induced flow increases of 121 ± 12%. In contrast, after similar papaverine-induced flow increases simultaneously with L-NMMA infusions, ascorbyl levels were not significantly changed compared to baseline. Similar results were obtained in isolated rabbit aortas perfused ex vivo with the spin trap a-phenyl-N-tert-butylnitrone (N = 22). However, in both preparations, this complete blockade was not reversed by co-infusion of excess L-arginine and was also obtained by N-methyl-D-arginine, thus indicating that it is not related to nitric oxide synthase. L-arginine alone was ineffective, as previously demonstrated for NG-methyl-L-arginine ester (L-NAME). In vitro, neither L-arginine nor its analogues scavenged superoxide radicals. This nonspecific activity of methylated arginine analogues underscores the need for careful controls in order to assess nitric oxide effects, particularly those related to interactions with active oxygen species.
Resumo:
To investigate the role of nitric oxide in human sepsis, ten patients with severe septic shock requiring vasoactive drug therapy and mechanical ventilation were enrolled in a prospective, open, non-randomized clinical trial to study the acute effects of methylene blue, an inhibitor of guanylate cyclase. Hemodynamic and metabolic variables were measured before and 20, 40, 60, and 120 min after the start of a 1-h intravenous infusion of 4 mg/kg of methylene blue. Methylene blue administration caused a progressive increase in mean arterial pressure (60 [55-70] to 70 [65-100] mmHg, median [25-75th percentiles]; P<0.05), systemic vascular resistance index (649 [479-1084] to 1066 [585-1356] dyne s-1 cm-5 m-2; P<0.05) and the left ventricular stroke work index (35 [27-47] to 38 [32-56] g m-1 m-2; P<0.05) from baseline to 60 min. The pulmonary vascular resistance index increased from 150 [83-207] to 186 [121-367] dyne s-1 cm-5 m-2 after 20 min (P<0.05). Mixed venous saturation decreased from 65 [56-76] to 63 [55-69]% (P<0.05) after 60 min. The PaO2/FiO2 ratio decreased from 168 [131-215] to 132 [109-156] mmHg (P<0.05) after 40 min. Arterial lactate concentration decreased from 5.1 ± 2.9 to 4.5 ± 2.1 mmol/l, mean ± SD (P<0.05) after 60 min. Heart rate, cardiac filling pressures, cardiac output, oxygen delivery and consumption did not change. Methylene blue administration was safe and no adverse effect was observed. In severe human septic shock, a short infusion of methylene blue increases systemic vascular resistance and may improve myocardial function. Although there was a reduction in blood lactate concentration, this was not explained by an improvement in tissue oxygenation, since overall oxygen availability did not change. However, there was a significant increase in pulmonary vascular tone and a deterioration in gas exchange. Further studies are needed to demonstrate if nitric oxide blockade with methylene blue can be safe for patients with septic shock and, particularly, if it has an effect on pulmonary function.
Resumo:
The neurotransmission of the chemoreflex in the nucleus tractus solitarii (NTS), particularly of the sympatho-excitatory component, is not completely understood. There is evidence that substance P may play a role in the neurotransmission of the chemoreflex in the NTS. Microinjection of substance P (50 pmol/50 nl, N = 12, and 5 nmol/50 nl, N = 8) into the commissural NTS of unanesthetized rats produced a significant increase in mean arterial pressure (101 ± 1 vs 108 ± 2 and 107 ± 3 vs 115 ± 4 mmHg, respectively) and no significant changes in heart rate (328 ± 11 vs 347 ± 15 and 332 ± 7 vs 349 ± 13 bpm, respectively) 2 min after microinjection. Previous treatment with WIN, an NK-1 receptor antagonist (2.5 nmol/50 nl), microinjected into the NTS of a specific group of rats, blocked the pressor (11 ± 5 vs 1 ± 2 mmHg) and tachycardic (31 ± 6 vs 4 ± 3 bpm) responses to substance P (50 pmol/50 nl, N = 5) observed 10 min after microinjection. Bilateral microinjection of WIN into the lateral commissural NTS (N = 8) had no significant effect on the pressor (50 ± 4 vs 42 ± 6 mmHg) or bradycardic (-230 ± 16 vs -220 ± 36 bpm) responses to chemoreflex activation with potassium cyanide (iv). These data indicate that the activation of NK-1 receptors by substance P in the NTS produces an increase in baseline mean arterial pressure and heart rate. However, the data obtained with WIN suggest that substance P and NK-1 receptors do not play a major role in the neurotransmission of the chemoreflex in the lateral commissural NTS.
Resumo:
To assess the role of angiotensin II in the sensitivity of the baroreflex control of heart rate (HR) in normotensive rats (N = 6) and chronically hypertensive rats (1K1C, 2 months, N = 7), reflex changes of HR were evaluated before and after (15 min) the administration of a selective angiotensin II receptor antagonist (losartan, 10 mg/kg, iv). Baseline values of mean arterial pressure (MAP) were higher in hypertensive rats (195 ± 6 mmHg) than in normotensive rats (110 ± 2 mmHg). Losartan administration promoted a decrease in MAP only in hypertensive rats (16%), with no changes in HR. During the control period, the sensitivity of the bradycardic and tachycardic responses to acute MAP changes were depressed in hypertensive rats (~70% and ~65%, respectively) and remained unchanged after losartan administration. Plasma renin activity was similar in the two groups. The present study demonstrates that acute blockade of AT1 receptors with losartan lowers the MAP in chronic renal hypertensive rats without reversal of baroreflex hyposensitivity, suggesting that the impairment of baroreflex control of HR is not dependent on an increased angiotensin II level.
Resumo:
The influence of chronic nitric oxide synthase inhibition with N G-nitro-L-arginine methyl ester (L-NAME) on body fluid distribution was studied in male Wistar rats weighing 260-340 g. Extracellular, interstitial and intracellular spaces, as well as plasma volume were measured after a three-week treatment with L-NAME (~70 mg/kg per 24 h in drinking water). An increase in extracellular space (16.1 ± 1.1 vs 13.7 ± 0.6 ml/100 g in control group, N = 12, P<0.01), interstitial space (14.0 ± 0.9 vs 9.7 ± 0.6 ml/100 g in control group, P<0.001) and total water (68.7 ± 3.9 vs 59.0 ± 2.9 ml/100 g, P<0.001) was observed in the L-NAME group (N = 8). Plasma volume was lower in L-NAME-treated rats (2.8 ± 0.2 ml/100 g) than in the control group (3.6 ± 0.1 ml/100 g, P<0.001). Blood volume was also lower in L-NAME-treated rats (5.2 ± 0.3 ml/100 g) than in the control group (7.2 ± 0.3 ml/100 g, P<0.001). The increase in total ratio of kidney wet weight to body weight in the L-NAME group (903 ± 31 vs 773 ± 45 mg/100 g in control group, P<0.01) but not in total kidney water suggests that this experimental hypertension occurs with an increase in renal mass. The fact that the heart weight to body weight ratio and the total heart water remained constant indicates that, despite the presence of high blood pressure, no modification in cardiac mass occurred. These data show that L-NAME-induced hypertension causes alterations in body fluid distribution and in renal mass.
Resumo:
Pressor responses elicited by stimulation of the nucleus raphe obscurus (NRO) depend on the integrity of the rostral ventrolateral medulla (RVLM). Therefore, to test the participation of excitatory amino acid (EAA) receptors in the cardiovascular responses evoked by NRO stimulation (1 ms, 100 Hz, 40-70 µA, for 10 s), the EAA antagonist kynurenic acid (Kyn) was microinjected at different sites in the ventrolateral medullar surface (2.7 nmol/200 nl) of male Wistar rats (270-320 g, N = 39) and NRO stimulation was repeated. The effects of NRO stimulation were: hypertension (deltaMAP = +43 ± 1 mmHg, P<0.01), bradycardia (deltaHR = -30 ± 7 bpm, P<0.01) and apnea. Bilateral microinjection of Kyn into the RVLM, which did not change baseline parameters, almost abolished the bradycardia induced by NRO stimulation (deltaHR = -61 ± 3 before vs -2 ± 3 bpm after Kyn, P<0.01, N = 7). Unilateral microinjection of Kyn into the CVLM did not change baseline parameters or reduce the pressor response to NRO stimulation (deltaMAP = +46 ± 5 before vs +48 ± 5 mmHg after Kyn, N = 6). Kyn bilaterally microinjected into the caudal pressor area reduced blood pressure and heart rate and almost abolished the pressor response to NRO stimulation (deltaMAP = +46 ± 4 mmHg before vs +4 ± 2 mmHg after Kyn, P<0.01, N = 7). These results indicate that EAA receptors on the medullary ventrolateral surface play a role in the modulation of the cardiovascular responses induced by NRO stimulation, and also suggest that the RVLM participates in the modulation of heart rate responses and that the caudal pressor area modulates the pressor response following NRO stimulation.
Resumo:
The use of colored microspheres to adequately evaluate blood flow changes under different circumstances in the same rat has been validated with a maximum of three different colors due to methodological limitations. The aim of the present study was to validate the use of four different colors measuring four repeated blood flow changes in the same rat to assess the role of vasopressor systems in controlling arterial pressure (AP). Red (150,000), white (200,000), yellow (150,000), and blue (200,000) colored microspheres were infused into the left ventricle of 6 male Wistar rats 1) at rest and 2) after vasopressin (aAVP, 10 µg/kg, iv), 3) renin-angiotensin (losartan, 10 mg/kg, iv), and 4) sympathetic system blockade (hexamethonium, 20 mg/kg, iv) to determine blood flow changes. AP was recorded and processed with a data acquisition system (1-kHz sampling frequency). Blood flow changes were quantified by spectrophotometry absorption peaks for colored microsphere components in the tissues evaluated. Administration of aAVP and losartan slightly reduced the AP (-5.7 ± 0.5 and -7.8 ± 1.2 mmHg, respectively), while hexamethonium induced a 52 ± 3 mmHg fall in AP. The aAVP injection increased blood flow in lungs (78%), liver (117%) and skeletal muscle (>150%), while losartan administration enhanced blood flow in heart (126%), lungs (100%), kidneys (80%), and gastrocnemius (75%) and soleus (94%) muscles. Hexamethonium administration reduced only kidney blood flow (50%). In conclusion, four types of colored microspheres can be used to perform four repeated blood flow measurements in the same rat detecting small alterations such as changes in tissues with low blood flow.
Resumo:
Findings by our group have shown that the dorsolateral telencephalon of Gymnotus carapo sends efferents to the mesencephalic torus semicircularis dorsalis (TSd) and that presumably this connection is involved in the changes in electric organ discharge (EOD) and in skeletomotor responses observed following microinjections of GABA A antagonist bicuculline into this telencephalic region. Other studies have implicated the TSd or its mammalian homologue, the inferior colliculus, in defensive responses. In the present study, we explore the possible involvement of the TSd and of the GABA-ergic system in the modulation of the electric and skeletomotor displays. For this purpose, different doses of bicuculline (0.98, 0.49, 0.245, and 0.015 mM) and muscimol (15.35 mM) were microinjected (0.1 µL) in the TSd of the awake G. carapo. Microinjection of bicuculline induced dose-dependent interruptions of EOD and increased skeletomotor activity resembling defense displays. The effects of the two highest doses showed maximum values at 5 min (4.3 ± 2.7 and 3.8 ± 2.0 Hz, P < 0.05) and persisted until 10 min (11 ± 5.7 and 8.7 ± 5.2 Hz, P < 0.05). Microinjections of muscimol were ineffective. During the interruptions of EOD, the novelty response (increased frequency in response to sensory novelties) induced by an electric stimulus delivered by a pair of electrodes placed in the water of the experimental cuvette was reduced or abolished. These data suggest that the GABA-ergic mechanisms of the TSd inhibit the neural substrate of the defense reaction at this midbrain level.
Resumo:
Hypoxia activates endothelial cells by the action of reactive oxygen species generated in part by cyclooxygenases (COX) production enhancing leukocyte transmigration. We investigated the effect of specific COX inhibition on the function of endothelial cells exposed to hypoxia. Mouse immortalized endothelial cells were subjected to 30 min of oxygen deprivation by gas exchange. Acridine orange/ethidium bromide dyes and lactate dehydrogenase activity were used to monitor cell viability. The mRNA of COX-1 and -2 was amplified and semi-quantified before and after hypoxia in cells treated or not with indomethacin, a non-selective COX inhibitor. Expression of RANTES (regulated upon activation, normal T cell expressed and secreted) protein and the protective role of heme oxygenase-1 (HO-1) were also investigated by PCR. Gas exchange decreased partial oxygen pressure (PaO2) by 45.12 ± 5.85% (from 162 ± 10 to 73 ± 7.4 mmHg). Thirty minutes of hypoxia decreased cell viability and enhanced lactate dehydrogenase levels compared to control (73.1 ± 2.7 vs 91.2 ± 0.9%, P < 0.02; 35.96 ± 11.64 vs 22.19 ± 9.65%, P = 0.002, respectively). COX-2 and HO-1 mRNA were up-regulated after hypoxia. Indomethacin (300 µM) decreased COX-2, HO-1, hypoxia-inducible factor-1alpha and RANTES mRNA and increased cell viability after hypoxia. We conclude that blockade of COX up-regulation can ameliorate endothelial injury, resulting in reduced production of chemokines.
Resumo:
The effect of proton pump inhibitors and Helicobacter pylori infection on the bioavailability of antibiotics is poorly understood. We determined the effects of 5-day oral administration of 60 mg lansoprazole on the bioavailability of clarithromycin in individuals with and without H. pylori infection. Thirteen H. pylori-infected and 10 non-infected healthy volunteers were enrolled in a study with an open-randomized two-period crossover design and a 21-day washout period between phases. Plasma concentrations of clarithromycin in subjects with and without lansoprazole pre-treatment were measured by liquid chromatography coupled to a tandem mass spectrometer. Clarithromycin Cmax and AUC0-10 h were significantly reduced after lansoprazole administration. In addition, lansoprazole treatment of the H. pylori-positive group resulted in a statistically significant greater reduction in Cmax (40 vs 15%) and AUC0-10 h (30 vs 10%) compared to lansoprazole-treated H. pylori-negative subjects. Thus, treatment with lansoprazole for 5 days reduced bioavailability of clarithromycin, irrespective of H. pylori status. This reduction, however, was even more pronounced in H. pylori-infected individuals.