17 resultados para Isotope Labeling.
Resumo:
Galactosemia is an inborn error of galactose metabolism that occurs mainly as the outcome of galactose-1-phosphate uridyltransferase (GALT) deficiency. The ability to assess galactose oxidation following administration of a galactose-labeled isotope (1-13C-galactose) allows the determination of galactose metabolism in a practical manner. We aimed to assess the level of galactose oxidation in both healthy and galactosemic Brazilian children. Twenty-one healthy children and seven children with galactosemia ranging from 1 to 7 years of age were studied. A breath test was used to quantitate 13CO2 enrichment in exhaled air before and at 30, 60, and 120 min after the oral administration of 7 mg/kg of an aqueous solution of 1-13C-galactose to all children. The molar ratios of 13CO2 and 12CO2 were quantified by the mass/charge ratio (m/z) of stable isotopes in each air sample by gas-isotope-ratio mass spectrometry. In sick children, the cumulative percentage of 13C from labeled galactose (CUMPCD) in the exhaled air ranged from 0.03% at 30 min to 1.67% at 120 min. In contrast, healthy subjects showed a much broader range in CUMPCD, with values from 0.4% at 30 min to 5.58% at 120 min. The study found a significant difference in galactose oxidation between children with and without galactosemia, demonstrating that the breath test is useful in discriminating children with GALT deficiencies.
Resumo:
The present study describes a method for labeling Salmonella typhymurium with iodine-131 to evaluate both the morphological and the functional characteristics of the reticulo-endothelial system. A suspension containing 2 x 10(9) bacteria per ml was labeled with carrier-free Na131I without reductor, with a labeling yield of 46.5 ± 3% and 3.5 ± 1.3% of free Iodine-131. The biodistribution of the labeled bacteria in rats was studied with a large field-of-view scintillation camera equiped with a pinhole collimator. Whole body images were obtained 15 and 30 minutes after intravenous injection of the labeled microorganisms. Images showed accumulation of bacteria in the liver and both normal and transplanted spleens of the animals. Autoradiographs of liver and spleen demonstrated labeled bacteria within the cells of the reticulo-endothelial system. The method described is easy to perform, has a good labeling yield and allows the functional evaluation of the reticulo-monophagocytic system, including transplanted spleens.
Resumo:
PURPOSE: To establish the Southern blotting technique using hybridization with a nonradioactive probe to detect large rearrangements of CYP21A2 in a Brazilian cohort with congenital adrenal hyperplasia due to 21-hydroxylase deficiency (CAH-21OH). METHOD: We studied 42 patients, 2 of them related, comprising 80 non-related alleles. DNA samples were obtained from peripheral blood, digested by restriction enzyme Taq I, submitted to Southern blotting and hybridized with biotin-labeled probes. RESULTS: This method was shown to be reliable with results similar to the radioactive-labeling method. We found CYP21A2 deletion (2.5%), large gene conversion (8.8%), CYP21AP deletion (3.8%), and CYP21A1P duplication (6.3%). These frequencies were similar to those found in our previous study in which a large number of cases were studied. Good hybridization patterns were achieved with a smaller amount of DNA (5 mug), and fragment signs were observed after 5 minutes to 1 hour of exposure. CONCLUSIONS: We established a non-radioactive (biotin) Southern blot/hybridization methodology for CYP21A2 large rearrangements with good results. Despite being more arduous, this technique is faster, requires a smaller amount of DNA, and most importantly, avoids problems with the use of radioactivity.
Resumo:
Global scale analyses of soil and foliage δ15N have found positive relationships between δ15N and ecosystem N loss (suggesting an open N cycle) and a negative relationship between δ15N and water availability. We show here that soils and leaves from tropical heath forests are depleted in 15N relative to 'typical' forests suggesting that they have a tight N cycle and are therefore limited by N rather than by, often suggested, water availability.
Resumo:
We have applied both enzyme cytochemistry and immunological labeling techniques to characterize the enzyme 5'-nucleotidase (5'-Nase), at the ultrastructural level, in promastigote forms of four Leishmania species: Leishmania amazonensis, Leishmania mexicana, Leishmania donovani and Leishmania chagasi. The cerium phosphate staining was localized at the surface of the cell body, the flagellum and the flagellar pocket membranes of all the parasites studied. The immunogold labelling technique confirmed these results. In this report we localized 5'-Nase in L. chagasi and L. amazonensis which have been implicated respectively in visceral and cutaneous forms of leishmaniasis. In addition, we confirmed the localization of this phosphomonoesterase in the other two species studied. The superior quality of the images, obtained with both methodologies, confirms that these parasites possess mechanisms capable of hydrolyzing nucleotide monophosphates, and that the expression of 5'-Nase is associated with the outer surface of the plasma membrane.
Resumo:
Rubidium chloride (RbCl) has been used for the study of vector biology and behavior, although the efficacy of marking, egg production, and survivorship of marked females have been poorly studied. Four concentrations of RbCl were tested, among which 0.025 M was the best for marking Aedes albopictus: more than 80% of egg batches of females fed once with blood containing RbCl were marked; Rb-marked egg batches, interspersed with non marked ones were recovered until 61 days after a blood meal containing RbCl followed by non marked meals; RbCl was essentially detected in the abdomen of marked females, whose egg production and survivorship did not differ from non marked ones, at least in the three weeks following the Rb-marked blood meal.
Resumo:
Seeds with a high concentration of P or Mo can improve the growth and N accumulation of the common bean (Phaseolus vulgaris L.), but the effect of enriched seeds on biological N2 fixation has not been established yet. This study aimed to evaluate the effect of seeds enriched with P and Mo on growth and biological N2 fixation of the common bean by the 15N isotope dilution technique. An experiment was carried out in pots in a 2 x 3 x 2 x 2 factorial design in randomized blocks with four replications, comprising two levels of soil applied P (0 and 80 mg kg-1), three N sources (without N, inoculated with rhizobia, and mineral N), two seed P concentrations (low and high), and two seed Mo concentrations (low and high). Non-nodulating bean and sorghum were used as non-fixing crops. The substrate was 5.0 kg of a Red Latosol (Oxisol) previously enriched with 15N and mixed with 5.0 kg of sand. Plants were harvested 41 days after emergence. Seeds with high P concentration increased the growth and N in shoots, particularly in inoculated plants at lower applied P levels. Inoculated plants raised from high P seeds showed improved nodulation at both soil P levels. Higher soil P levels increased the percentage of N derived from the atmosphere (%Ndfa) in bean leaves. Inoculation with the selected strains increased the %Ndfa. High seed P increased the %Ndfa in inoculated plants at lower soil P levels. High seed Mo increased the %Ndfa at lower soil P levels in plants that did not receive inoculation or mineral N. It is concluded that high seed P concentration increases the growth, N accumulation and the contribution of the biological N2 fixation in the common bean, particularly in inoculated plants grown at lower soil P availability.
Resumo:
Sulphur plays an essential role in plants and is one of the main nutrients in several metabolic processes. It has four stable isotopes (32S, 33S, 34S, and 36S) with a natural abundance of 95.00, 0.76, 4.22, and 0.014 in atom %, respectively. A method for isotopic determination of S by isotope-ratio mass spectrometry (IRMS) in soil samples is proposed. The procedure involves the oxidation of organic S to sulphate (S-SO4(2-)), which was determined by dry combustion with alkaline oxidizing agents. The total S-SO4(2-) concentration was determined by turbidimetry and the results showed that the conversion process was adequate. To produce gaseous SO2 gas, BaSO4 was thermally decomposed in a vacuum system at 900 ºC in the presence of NaPO3. The isotope determination of S (atom % 34S atoms) was carried out by isotope ratio mass spectrometry (IRMS). In this work, the labeled material (K2(34)SO4) was used to validate the method of isotopic determination of S; the results were precise and accurate, showing the viability of the proposed method.
Resumo:
Field experiments involving upland rice genotypes, sown in various dates in late season, were carried out to assess the relationship of carbon isotope discrimination with grain yield and drought resistance. In each one of the three years, one trial was kept under good water availability, while other suffered water shortage for a period of 18-23 days, encompassing panicle emergence and flowering. Drought stress reduced carbon isotope discrimination measured on soluble sugars (deltas) extracted from stem uppermost internode at the end of the imposition period, but had relatively less effect on bulk dry matter of leaves, sampled at the same period, or that of uppermost internodes and grains, sampled at harvest. The drought-induced reduction in deltas was accompanied of reduced spikelet fertility and grain yield. In the three trials subjected to drought, genotypes with the highest yield and spikelet fertility had the lowest deltas. However, this relationship was weak and it was concluded that deltas is not a sufficiently reliable indicator of rice drought resistance to be useful as a screening test in breeding programs. On the other hand, grain yield and spikelet fertility of genotypes which were the soonest to reach 50% flowering within the drought imposition period, were the least adversely affected by drought. Then, timing of drought in relation to panicle emergence and to flowering appeared to be a more important cause of yield variation among genotypes than variation in deltas.
Resumo:
The objective of this work was to evaluate the carbon isotope fractionation as a phenomic facility for cotton selection in contrasting environments and to assess its relationship with yield components. The experiments were carried out in a randomized block design, with four replicates, in the municipalities of Santa Helena de Goiás (SHGO) and Montividiu (MONT), in the state of Goiás, Brazil. The analysis of carbon isotope discrimination (Δ) was performed in 15 breeding lines and three cultivars. Subsequently, the root growth kinetic and root system architecture from the selected genotypes were determined. In both locations, Δ analyses were suitable to discriminate cotton genotypes. There was a positive correlation between Δ and seed-cotton yield in SHGO, where water deficit was more severe. In this site, the negative correlations found between Δ and fiber percentage indicate an integrative effect of gas exchange on Δ and its association with yield components. As for root robustness and growth kinetic, the GO 05 809 genotype performance contributes to sustain the highest values of Δ found in MONT, where edaphoclimatic conditions were more suitable for cotton. The use of Δ analysis as a phenomic facility can help to select cotton genotypes, in order to obtain plants with higher efficiency for gas exchange and water use.
Resumo:
The aim of this work was to compare the performance of isotope-selective non-dispersive infrared spectrometry (IRIS) for the 13C-urea breath test with the combination of the 14C-urea breath test (14C-UBT), urease test and histologic examination for the diagnosis of H. pylori (HP) infection. Fifty-three duodenal ulcer patients were studied. All patients were submitted to gastroscopy to detect HP by the urease test, histologic examination and 14C-UBT. To be included in the study the results of the 3 tests had to be concordant. Within one month after admission to the study the patients were submitted to IRIS with breath samples collected before and 30 min after the ingestion of 75 mg 13C-urea dissolved in 200 ml of orange juice. The samples were mailed and analyzed 11.5 (4-21) days after collection. Data were analyzed statistically by the chi-square and Mann-Whitney test and by the Spearman correlation coefficient. Twenty-six patients were HP positive and 27 negative. There was 100% agreement between the IRIS results and the HP status determined by the other three methods. Using a cutoff value of delta-over-baseline (DOB) above 4.0 the IRIS showed a mean value of 19.38 (minimum = 4.2, maximum = 41.3, SD = 10.9) for HP-positive patients and a mean value of 0.88 (minimum = 0.10, maximum = 2.5, SD = 0.71) for negative patients. Using a cutoff value corresponding to 0.800% CO2/weight (kg), the 14C-UBT showed a mean value of 2.78 (minimum = 0.89, maximum = 5.22, SD = 1.18) in HP-positive patients. HP-negative patients showed a mean value of 0.37 (minimum = 0.13, maximum = 0.77, SD = 0.17). IRIS is a low-cost, easy to manage, highly sensitive and specific test for H. pylori detection. Storing and mailing the samples did not interfere with the performance of the test.
Resumo:
Ginkgo biloba extract (EGb) is a phytotherapeutic agent used for the treatment of ischemic and neurological disorders. Because the action of this important extract is not fully known, assays using different biological systems need to be performed. Red blood cells (RBC) are labeled with technetium-99m (Tc-99m) and used in nuclear medicine. The labeling depends on a reducing agent, usually stannous chloride (SnCl2). We assessed the effect of different concentrations of EGb on the labeling of blood constituents with Tc-99m, as sodium pertechnetate (3.7 MBq), and on the mobility of a plasmid DNA treated with SnCl2 (1.2 µg/ml) at room temperature. Blood was incubated with EGb before the addition of SnCl2 and Tc-99m. Plasma (P) and RBC were separated and precipitated with trichloroacetic acid, and soluble (SF-P and SF-RBC) and insoluble (IF-P and IF-RBC) fractions were isolated. The plasmid was incubated with Egb, SnCl2 or EGb plus SnCl2 and agarose gel electrophoresis was performed. The gel was stained with ethidium bromide and the DNA bands were visualized by fluorescence in an ultraviolet transilluminator system. EGb decreased the labeling of RBC, IF-P and IF-RBC. The supercoiled form of the plasmid was modified by treatment with SnCl2 and protected by 40 mg/ml EGb. The effect of EGb on the tested systems may be due to its chelating action with the stannous ions and/or pertechnetate or to the capability to generate reactive oxygen species that could oxidize the stannous ion.
Resumo:
Phosphatidylserine (PS) exposure occurs during the cell death program and fluorescein-labeled lactadherin permits the detection of PS exposure earlier than annexin V in suspended cell lines. Adherent cell lines were studied for this apoptosis-associated phenomenon to determine if PS probing methods are reliable because specific membrane damage may occur during harvesting. Apoptosis was induced in the human tongue squamous carcinoma cell line (Tca8113) and the adenoid cystic carcinoma cell line (ACC-2) by arsenic trioxide. Cells were harvested with a modified procedure and labeled with lactadherin and/or annexin V. PS exposure was localized by confocal microscopy and apoptosis was quantified by flow cytometry. The detachment procedure without trypsinization did not induce cell damage. In competition binding experiments, phospholipid vesicles competed for more than 95 and 90% of lactadherin but only about 75 and 70% of annexin V binding to Tca8113 and ACC-2 cells. These data indicate that PS exposure occurs in three stages during the cell death program and that fluorescein-labeled lactadherin permitted the detection of early PS exposure. A similar pattern of PS exposure has been observed in two malignant cell lines with different adherence, suggesting that this pattern of PS exposure is common in adherent cells. Both lactadherin and annexin V could be used in adherent Tca8113 and ACC-2 cell lines when an appropriate harvesting procedure was used. Lactadherin is more sensitive than annexin V for the detection of PS exposure as the physical structure of PS in these blebs and condensed apoptotic cell surface may be more conducive to binding lactadherin than annexin V.
Resumo:
The objectives of this study were to develop the method of isotope analysis to quantify the carbon of C3 photosynthetic cycle in pulpy whole apple juice and to measure the legal limits based on Brazilian legislation in order to identify the beverages that do not conform to the Ministry of Agriculture, Livestock and Food Supply (MAPA). This beverage was produced in a laboratory according to the Brazilian law. Pulpy juices adulterated by the addition of sugarcane were also produced. The isotope analyses measured the relative isotope enrichment of the juices, their pulpy fractions (internal standard) and purified sugar. From those results, the quantity of C3 source was estimated by means of the isotope dilution equation. To determine the existence of adulteration in commercial juices, it was necessary to create a legal limit according to the Brazilian law. Three brands of commercial juices were analyzed. One was classified as adulterated. The legal limit enabled to clearly identify the juice that was not in conformity with the Brazilian law. The methodology developed proved efficient for quantifying the carbon of C3 origin in commercial pulpy apple juices.