27 resultados para Intact Human Erythrocytes
Resumo:
The malarial GBP 130 protein binds weakly to intact human erythrocytes; the binding sites seem to be located in the repeat region and this region's antibodies block the merozoite invasion. A peptide from this region (residues from 701 to 720) which binds to human erythrocytes was identified. This peptide named 2220 did not bind to sialic acid; the binding site on human erythrocyte was affected by treatment with trypsin but not by chymotrypsin. The peptide was able to inhibit Plasmodium falciparum merozoite invasion of erythrocytes. The residues F701, K703, L705, T706, E713 (FYKILTNTDPNDEVERDNAD) were found to be critical for peptide binding to erythrocytes.
Resumo:
The free form of the iron ion is one of the strongest oxidizing agents in the cellular environment. The effect of iron at different concentrations (0, 1, 5, 10, 50, and 100 µM Fe3+) on the normal human red blood cell (RBC) antioxidant system was evaluated in vitro by measuring total (GSH) and oxidized (GSSG) glutathione levels, and superoxide dismutase (SOD), catalase, glutathione peroxidase (GSH-Px) and reductase (GSH-Rd) activities. Membrane lipid peroxidation was assessed by measuring thiobarbituric acid reactive substance (TBARS). The RBC were incubated with colloidal iron hydroxide and phosphate-buffered saline, pH 7.45, at 37oC, for 60 min. For each assay, the results for the control group were: a) GSH = 3.52 ± 0.27 µM/g Hb; b) GSSG = 0.17 ± 0.03 µM/g Hb; c) GSH-Px = 19.60 ± 1.96 IU/g Hb; d) GSH-Rd = 3.13 ± 0.17 IU/g Hb; e) catalase = 394.9 ± 22.8 IU/g Hb; f) SOD = 5981 ± 375 IU/g Hb. The addition of 1 to 100 µM Fe3+ had no effect on the parameters analyzed. No change in TBARS levels was detected at any of the iron concentrations studied. Oxidative stress, measured by GSH kinetics over time, occurs when the RBC are incubated with colloidal iron hydroxide at concentrations higher than 10 µM of Fe3+. Overall, these results show that the intact human RBC is prone to oxidative stress when exposed to Fe3+ and that the RBC has a potent antioxidant system that can minimize the potential damage caused by acute exposure to a colloidal iron hydroxide in vitro.
The secondary alcohol and aglycone metabolites of doxorubicin alter metabolism of human erythrocytes
Resumo:
Anthracyclines, a class of antitumor drugs widely used for the treatment of solid and hematological malignancies, cause a cumulative dose-dependent cardiac toxicity whose biochemical basis is unclear. Recent studies of the role of the metabolites of anthracyclines, i.e., the alcohol metabolite doxorubicinol and aglycone metabolites, have suggested new hypotheses about the mechanisms of anthracycline cardiotoxicity. In the present study, human red blood cells were used as a cell model. Exposure (1 h at 37ºC) of intact human red blood cells to doxorubicinol (40 µM) and to aglycone derivatives of doxorubicin (40 µM) induced, compared with untreated red cells: i) a ~2-fold stimulation of the pentose phosphate pathway (PPP) and ii) a marked inhibition of the red cell antioxidant enzymes, glutathione peroxidase (~20%) and superoxide dismutase (~60%). In contrast to doxorubicin-derived metabolites, doxorubicin itself induced a slighter PPP stimulation (~35%) and this metabolic event was not associated with any alteration in glutathione reductase, glutathione peroxidase, catalase or superoxide dismutase activity. Furthermore, the interaction of hemoglobin with doxorubicin and its metabolites induced a significant increase (~22%) in oxygen affinity compared with hemoglobin incubated without drugs. On the basis of the results obtained in the present study, a new hypothesis, involving doxorubicinol and aglycone metabolites, has been proposed to clarify the mechanisms responsible for the doxorubicin-induced red blood cell toxicity.
Resumo:
The acquisition of host antigens by Schistosoma mansoni was studied by evaluating the resistance of schistosomula to the complement attack mediated by lethal antibody. Schistosomula cultured for 24 hours with intact human erythrocytes (N-HuE) or ghosts of any type of ABO or Rh blood group, showed a marked resistance to complement damage. Sheep red blood cells, pronase-treated N-HuE or erythrocytes from patients with paroxysmal nocturnal hemoglobinuria, which are complement-sensitive cells, were unable to protect schistosomula. Schistosomula protected by N-HuE became again susceptible to complement killing after incubation with a monoclonal antibody anti-DAF. These results indicate that, in vitro, host DAF from N-HuE can be acquired by schistosomula surface in a biological active form that protects the parasite from the complement lesion.
Resumo:
Six clinical isolates of influenza A viruses were examined for hemagglutinin receptor specificity and neuraminidase substrate specificity. All of the viral isolates minimally passaged in mammalian cells demonstrated preferential agglutination of human erythrocytes enzymatically modified to contain NeuAc alpha 2,6Gal sequences, with no agglutination of cells bearing NeuAc alpha 2,3Gal sequences. This finding is consistent with the hemagglutination receptor specificity previously demonstrated for laboratory strains of influenza A viruses. The neuraminidase substrate specificities of the clinical isolates examined were also identical to that described for the N2 neuraminidase of recent laboratory strains of human influenza viruses. The H3N2 viruses all displayed the ability to release sialic acid from both alpha 2, 3 and alpha 2, 6 linkages. In addition, two clinical isolates of H1N1 viruses also demonstrated this dual neuraminidase substrate specificity, a characteristic which has not been previously described for the N1 neuraminidase. These results demonstrate that complementary hemagglutinin and neuraminidase specificities are found in recent isolates of both H1N1 and H3N2 influenza viruses.
Resumo:
Electro-rotation can be used to determine the dielectric properties of cells, as well as to observe dynamic changes in both dielectric and morphological properties. Suspended biological cells and particles respond to alternating-field polarization by moving, deforming or rotating. While in linearly polarized alternating fields the particles are oriented along their axis of highest polarizability, in circularly polarized fields the axis of lowest polarizability aligns perpendicular to the plane of field rotation. Ellipsoidal models for cells are frequently applied, which include, beside sphere-shaped cells, also the limiting cases of rods and disks. Human erythrocyte cells, due to their particular shape, hardly resemble an ellipsoid. The additional effect of rouleaux formation with different numbers of aggregations suggests a model of circular cylinders of variable length. In the present study, the induced dipole moment of short cylinders was calculated and applied to rouleaux of human erythrocytes, which move freely in a suspending conductive medium under the effect of a rotating external field. Electro-rotation torque spectra are calculated for such aggregations of different length. Both the maximum rotation speeds and the peak frequencies of the torque are found to depend clearly on the size of the rouleaux. While the rotation speed grows with rouleaux length, the field frequency nup is lowest for the largest cell aggregations where the torque shows a maximum.
Resumo:
The haemolymph of Panstrongylus megistus showed a natural lectin activity for a wide range of vertebrate erythocytes. Agglutination was observed against all vertebrate erythrocytes tested (human ABO, duck, rabbit, mouse, sheep, chicken and cow). Cow erythrocytes showed the lowest titre. Concerning human erythrocytes, the lectin activity was similar in the types A+,B+ and AB+ while the highest activity was observed in the type O+. Determination of minimal inhibitory concentrations was carried out with human erythrocytes type O+. Agglutination was inhibited by several carbohydrates (rhamnose. D-galatose, raffinose, D-lactose and D-fucose). Rhamnose wasreported as the strongest inhibitor (0.78mM). The results suggest the presence of more than one lection in the haemolymph of P. megistus.
Resumo:
Schistosomula of Schistosoma mansoni became resistant to antibody-dependent complement damage in vitro after pre-incubation with normal human erythrocytes (NHuE) whatever the ABO or Rh blood group. Resistant parasites were shown to acquire host decay accelerating factor (DAF) , a 70 kDa glycoprotein attached to the membrane of NHue by a GPI anchor. IgG2a mAb anti-human DAF (IA10) immunoprecipitated a 70 kDa molecule from 125I-labeled schistosomula pre-incubated with NHuE and inhibited their resistance to complement-dependent killing in vtro. Incubationof schistosomula with erytrocytes from patients with paroxsimal nocturnal hemoglobinuria (PNHE) or SRBC, wich are DAF-deficient, did not protect the parasites from complement lesion. Supernatant of 100,000 x g collected from NHuE incubated for 24 h in defined medium was shown to contain a soluble form of DAF and to protect schistosomula from complement killing. Schistosomula treated with trypsin before incubation with NHuE ghosts did not become resistant to complement damage. On the other hand, pre-treatment with chymotrypsin did not interfere with the acquisition of resistance by the schistosomula. These results indicate that, in vitro, NHuE DAF can be transferred to schistosomula in a soluble form and that the binding of this molecule to the parasite surface is dependent upon trypsin-sensitive chymotrypsin-insensitive polipeptide(s) present on the surface of the worm.
Resumo:
The hemolytic activity of live isolates and clones of Trichomonas vaginalis and Tritrichomonas foetus was investigated. The isolates were tested against human erythrocytes. No hemolytic activity was detected by the isolates of T. foetus. Whereas the isolates of T. vaginalis lysed erythrocytes from all human blood groups. No hemolysin released by the parasites could be detected. Our preliminary results suggest that hemolysis depend on the susceptibility of red cell membranes to destabilization and the intervention of cell surface receptors as a mechanism of the hemolytic activity. The mechanism could be subject to strain-species-genera specific variation of trichomonads. The hemolytic activity of T. vaginalis is not due to a hemolysin or to a product of its metabolism. Pretreatment of trichomonads with concanavalin A reduced levels of hemolysis by 40%.
Resumo:
Plasmodium vivax infects human erythrocytes through a major pathway that requires interaction between an apical parasite protein, the Duffy binding protein (PvDBP) and its receptor on reticulocytes, the Duffy antigen/receptor for chemokines (DARC). The importance of the interaction between PvDBP (region II, DBPII) and DARC to P. vivax infection has motivated our malaria research group at Oswaldo Cruz Foundation (state of Minas Gerais, Brazil) to conduct a number of immunoepidemiological studies to characterise the naturally acquired immunity to PvDBP in populations living in the Amazon rainforest. In this review, we provide an update on the immunology and molecular epidemiology of PvDBP in the Brazilian Amazon - an area of markedly unstable malaria transmission - and compare it with data from other parts of Latin America, as well as Asia and Oceania.
Resumo:
In a comparative study of erythrocyte metabolism of vertebrates, the specific activity of glucose-6-phosphate dehydrogenase (G6PD) of the Brazilian opossum Didelphis marsupialis in a hemolysate was shown to be high, 207 ± 38 IU g-1 Hb-1 min-1 at 37ºC, compared to the human erythrocyte activity of 12 ± 2 IU g-1 Hb-1 min-1 at 37ºC. The apparent high specific activity of the mixture led us to investigate the physicochemical properties of the opossum enzyme. We report that reduced glutathione (GSH) in the erythrocytes was only 50% higher than in human erythrocytes, a value lower than expected from the high G6PD activity since GSH is maintained in a reduced state by G6PD activity. The molecular mass, determined by G-200 Sephadex column chromatography at pH 8.0, was 265 kDa, which is essentially the same as that of human G6PD (260 kDa). The Michaelis-Menten constants (Km: 55 µM) for glucose-6-phosphate and nicotinamide adenine dinucleotide phosphate (Km: 3.3 µM) were similar to those of the human enzyme (Km: 50-70 and Km: 2.9-4.4, respectively). A 450-fold purification of the opossum enzyme was achieved and the specific activity of the purified enzyme, 90 IU/mg protein, was actually lower than the 150 IU/mg protein observed for human G6PD. We conclude that G6PD after purification from the hemolysate of D. marsupialis does not have a high specific activity. Thus, it is quite probable that the red cell hyperactivity reported may be explained by increased synthesis of G6PD molecules per unit of hemoglobin or to reduced inactivation in the RBC hemolysate.
Resumo:
Abstract A novel lectin was isolated from the seeds of Chenopodium quinoa. To achieve this end, the crude extract from the quinoa was submitted to two purification steps, Sephadex G50 and Mono Q. The hemagglutinating activity showed that this lectin agglutinates human erythrocytes. Its activity is inhibited by glucose and mannose, and remained stable under a wide range of pH levels and temperatures. The quinoa lectin was found to be a heterodimeric lectin of approximately 60 kDa, consisting of two subunits of approximately 25 kDa and 35 kDa. This lectin had its antimicrobial activity tested against several bacteria strains and effectively inhibited three strains. These strains were all Gram-negative, making this lectin a promising antimicrobial tool.
Resumo:
Monocytes/macrophages play a critical role in the defense mechanisms against malaria parasites, and are the main cells responsible for the elimination of malaria parasites from the blood circulation. We carried out a microscope-aided evaluation of the stages of in vitro phagocytosis of Plasmodium falciparum-infected erythrocytes, by human monocytes. These cells were obtained from healthy adult individuals by means of centrifugation through a cushion of Percoll density medium and were incubated with erythrocytes infected with Plasmodium falciparum that had previously been incubated with a pool of anti-plasmodial immune serum. We described the stages of phagocytosis, starting from adherence of infected erythrocytes to the phagocyte membrane and ending with their destruction within the phagolisosomes of the monocytes. We observed that the different erythrocytic forms of the parasite were ingested by monocytes, and that the process of phagocytosis may be completed in around 30 minutes. Furthermore, we showed that phagocytosis may occur continuously, such that different phases of the process were observed in the same phagocyte.
Resumo:
A Casearia sylvestris (Flacourtiaceae) é uma planta popularmente conhecida como "guaçatonga" e é usada por povos indígenas da América do sul (Brasil, Peru e Bolivia) no tratamento de muitas doenças, incluindo câncer. Estudos citotóxicos mostraram que esta planta apresenta um possível e interessante potencial antitumoral devido à presença de moléculas chamadas casearinas. Além disso, a composição do óleo essencial mostrou uma alta concentração de sesquiterpenos de alto potencial citotóxico. Neste trabalho, nós verificamos que o óleo essencial da C. sylvestris apresentou uma boa citotoxicidade seletiva contra as linhagens de células tumorais HeLa, A-549 and HT-29 (CD50 63,3, 60,7 e 90,6 µg.ml-1, respectivamente) quando comparada às células não-tumorais Vero (CD50 210,1 µg.ml-1) e macrófagos de camundongos (CD50 234,0 µg.ml-1). Além disso, o óleo causou hemólise em sete diferentes tipos de eritrócitos, indicando que a C. sylvestris precisa ser usada com cuidado. Também foram testados padrões de β-cariofileno e α-humuleno que mostraram citotoxicidade similar àquelas apresentadas pelo óleo, indicando que estes compostos podem ser os responsáveis pelos efeitos tóxicos que foram observados neste estudo.