21 resultados para FSS. Frequency Selective Surface. Microwave Circuits. Genetic Algorithm.GA
Resumo:
We introduce a global optimization method based on the cooperation between an Artificial Neural Net (ANN) and Genetic Algorithm (GA). We have used ANN to select the initial population for the GA. We have tested the new method to predict the ground-state geometry of silicon clusters. We have described the clusters as a piling of plane structures. We have trained three ANN architectures and compared their results with those of pure GA. ANN strongly reduces the total computational time. For Si10, it gained a factor of 5 in search speed. This method can be easily extended to other optimization problems.
Resumo:
Infections by Candida species are a high-impact problem in public health due to their wide incidence in hospitalized patients. The goal of this study was to evaluate frequency, susceptibility to antifungals, and genetic polymorphism of Candida species isolated from clinical specimens of hospitalized patients. The Candida isolates included in this study were obtained from blood cultures, abdominal fluids, and central venous catheters (CVC) of hospitalized patients at the Clinical Hospital of the Federal University of Uberlândia during the period of July 2010 - June 2011. Susceptibility tests were conducted by the broth microdilution method. The RAPD-PCR tests used employed initiator oligonucleotides OPA09, OPB11, and OPE06. Of the 63 Candida isolates, 18 (28.5%) were C. albicans, 20 (31.7%) were C. parapsilosis complex species, 14 (22.2%) C. tropicalis, four (6.4%) C. glabrata, four (6.4%) C. krusei, two (3.3%) C. kefyr, and one (1.6%) C. lusitaniae. In vitro resistance to amphotericin B was observed in 12.7% of isolates. In vitroresistance to azoles was not detected, except for C. krusei. The two primers, OPA09 and OPB11, were able to distinguish different species. Isolates of C. albicans and C. parapsilosis complex species presented six and five clusters, respectively, with the OPA09 marker by RAPD-PCR, showing the genetic variability of the isolates of those species. It was concluded that members of the C. parapsilosis complex were the most frequent species found, and most isolates were susceptible to the antifungals amphotericin B, flucozanole, and itraconazole. High genetic polymorphisms were observed for isolates of C. albicans and C. parapsilosis complex species, mainly with the OPA09 marker.
Resumo:
An important aspect of tropical medicine is analysis of geographic aspects of risk of disease transmission, which for lack of detailed public health data must often be reduced to an understanding of the distributions of critical species such as vectors and reservoirs. We examine the applicability of a new technique, ecological niche modeling, to the challenge of understanding distributions of such species based on municipalities in the state of São Paulo in which a group of 5 Lutzomyia sandfly species have been recorded. The technique, when tested based on independent occurrence data, yielded highly significant predictions of species' distributions; minimum sample sizes for effective predictions were around 40 municipalities.
Resumo:
Literature from 1928 through 2004 was compiled from different document sources published in Mexico or elsewhere. From these 907 publications, we found 19 different topics of Chagas disease study in Mexico. The publications were arranged by decade and also by state. This information was used to construct maps describing the distribution of Chagas disease according to different criteria: the disease, vectors, reservoirs, and strains. One of the major problems confronting study of this zoonotic disease is the great biodiversity of the vector species; there are 30 different species, with at least 10 playing a major role in human infection. The high variability of climates and biogeographic regions further complicate study and understanding of the dynamics of this disease in each region of the country. We used a desktop Genetic Algorithm for Rule-Set Prediction procedure to provide ecological models of organism niches, offering improved flexibility for choosing predictive environmental and ecological data. This approach may help to identify regions at risk of disease, plan vector-control programs, and explore parasitic reservoir association. With this collected information, we have constructed a data base: CHAGMEX, available online in html format.
Resumo:
Understanding the different background landscapes in which malaria transmission occurs is fundamental to understanding malaria epidemiology and to designing effective local malaria control programs. Geology, geomorphology, vegetation, climate, land use, and anopheline distribution were used as a basis for an ecological classification of the state of Roraima, Brazil, in the northern Amazon Basin, focused on the natural history of malaria and transmission. We used unsupervised maximum likelihood classification, principal components analysis, and weighted overlay with equal contribution analyses to fine-scale thematic maps that resulted in clustered regions. We used ecological niche modeling techniques to develop a fine-scale picture of malaria vector distributions in the state. Eight ecoregions were identified and malaria-related aspects are discussed based on this classification, including 5 types of dense tropical rain forest and 3 types of savannah. Ecoregions formed by dense tropical rain forest were named as montane (ecoregion I), submontane (II), plateau (III), lowland (IV), and alluvial (V). Ecoregions formed by savannah were divided into steppe (VI, campos de Roraima), savannah (VII, cerrado), and wetland (VIII, campinarana). Such ecoregional mappings are important tools in integrated malaria control programs that aim to identify specific characteristics of malaria transmission, classify transmission risk, and define priority areas and appropriate interventions. For some areas, extension of these approaches to still-finer resolutions will provide an improved picture of malaria transmission patterns.
Resumo:
Genetic algorithm is an optimization technique based on Darwin evolution theory. In last years its application in chemistry is increasing significantly due the special characteristics for optimization of complex systems. The basic principles and some further modifications implemented to improve its performance are presented, as well as a historical development. A numerical example of a function optimization is also shown to demonstrate how the algorithm works in an optimization process. Finally several chemistry applications realized until now is commented to serve as parameter to future applications in this field.
Resumo:
Genetic algorithm was used for variable selection in simultaneous determination of mixtures of glucose, maltose and fructose by mid infrared spectroscopy. Different models, using partial least squares (PLS) and multiple linear regression (MLR) with and without data pre-processing, were used. Based on the results obtained, it was verified that a simpler model (multiple linear regression with variable selection by genetic algorithm) produces results comparable to more complex methods (partial least squares). The relative errors obtained for the best model was around 3% for the sugar determination, which is acceptable for this kind of determination.
Resumo:
The process of building mathematical models in quantitative structure-activity relationship (QSAR) studies is generally limited by the size of the dataset used to select variables from. For huge datasets, the task of selecting a given number of variables that produces the best linear model can be enormous, if not unfeasible. In this case, some methods can be used to separate good parameter combinations from the bad ones. In this paper three methodologies are analyzed: systematic search, genetic algorithm and chemometric methods. These methods have been exposed and discussed through practical examples.
Resumo:
Genetic algorithm and multiple linear regression (GA-MLR), partial least square (GA-PLS), kernel PLS (GA-KPLS) and Levenberg-Marquardt artificial neural network (L-M ANN) techniques were used to investigate the correlation between retention index (RI) and descriptors for 116 diverse compounds in essential oils of six Stachys species. The correlation coefficient LGO-CV (Q²) between experimental and predicted RI for test set by GA-MLR, GA-PLS, GA-KPLS and L-M ANN was 0.886, 0.912, 0.937 and 0.964, respectively. This is the first research on the QSRR of the essential oil compounds against the RI using the GA-KPLS and L-M ANN.
Resumo:
Genetic algorithm and partial least square (GA-PLS) and kernel PLS (GA-KPLS) techniques were used to investigate the correlation between retention indices (RI) and descriptors for 117 diverse compounds in essential oils from 5 Pimpinella species gathered from central Turkey which were obtained by gas chromatography and gas chromatography-mass spectrometry. The square correlation coefficient leave-group-out cross validation (LGO-CV) (Q²) between experimental and predicted RI for training set by GA-PLS and GA-KPLS was 0.940 and 0.963, respectively. This indicates that GA-KPLS can be used as an alternative modeling tool for quantitative structure-retention relationship (QSRR) studies.
Resumo:
Non-linear functional representation of the aerodynamic response provides a convenient mathematical model for motion-induced unsteady transonic aerodynamic loads response, that accounts for both complex non-linearities and time-history effects. A recent development, based on functional approximation theory, has established a novel functional form; namely, the multi-layer functional. For a large class of non-linear dynamic systems, such multi-layer functional representations can be realised via finite impulse response (FIR) neural networks. Identification of an appropriate FIR neural network model is facilitated by means of a supervised training process in which a limited sample of system input-output data sets is presented to the temporal neural network. The present work describes a procedure for the systematic identification of parameterised neural network models of motion-induced unsteady transonic aerodynamic loads response. The training process is based on a conventional genetic algorithm to optimise the network architecture, combined with a simplified random search algorithm to update weight and bias values. Application of the scheme to representative transonic aerodynamic loads response data for a bidimensional airfoil executing finite-amplitude motion in transonic flow is used to demonstrate the feasibility of the approach. The approach is shown to furnish a satisfactory generalisation property to different motion histories over a range of Mach numbers in the transonic regime.
Resumo:
Atualmente vêm sendo desenvolvidas e utilizadas várias técnicas de modelagem de distribuição geográfica de espécies com os mais variados objetivos. Algumas dessas técnicas envolvem modelagem baseada em análise ambiental, nas quais os algoritmos procuram por condições ambientais semelhantes àquelas onde as espécies foram encontradas, resultando em áreas potenciais onde as condições ambientais seriam propícias ao desenvolvimento dessas espécies. O presente estudo trata do uso da modelagem preditiva de distribuição geográfica de espécies nativas, através da utilização de algoritmo genético, como ferramenta para auxiliar o entendimento dos padrões de distribuição do bioma cerrado no Estado de São Paulo. A metodologia empregada e os resultados obtidos foram considerados satisfatórios para a geração de modelos de distribuição geográfica de espécies vegetais, baseados em dados abióticos, para as regiões de estudo. A eficácia do modelo em predizer a ocorrência de espécies do cerrado é maior se forem utilizados apenas pontos de amostragem com fisionomias de cerrado, excluindo-se áreas de transição. Para minimizar problemas decorrentes da falta de convergência do algoritmo utilizado GARP ("Genetic Algorithm for Rule Set Production"), foram gerados 100 modelos para cada espécie modelada. O uso de modelagem pode auxiliar no entendimento dos padrões de distribuição de um bioma ou ecossistema em uma análise regional.
Resumo:
In this study, the effects of hot-air drying conditions on color, water holding capacity, and total phenolic content of dried apple were investigated using artificial neural network as an intelligent modeling system. After that, a genetic algorithm was used to optimize the drying conditions. Apples were dried at different temperatures (40, 60, and 80 °C) and at three air flow-rates (0.5, 1, and 1.5 m/s). Applying the leave-one-out cross validation methodology, simulated and experimental data were in good agreement presenting an error < 2.4 %. Quality index optimal values were found at 62.9 °C and 1.0 m/s using genetic algorithm.
Resumo:
BACKGROUND: Use of polyclonal anti-hepatitis B surface antigen immunoglobulin (HBIg) has been shown to reduce hepatitis B virus (HBV) recurrence after liver transplantation (LT) and to decrease the frequency of acute cellular rejection (ACR). However, the protective role of HBIg against ACR remains controversial, since HBV infection has been also associated with a lower incidence of ACR. AIM: To assess the relationship between HBIg immunoprophylaxis and the incidence of rejection after LT. METHODS: 260 patients (158 males, 43 ± 14 years old) submitted to LT were retrospectively evaluated and divided into three groups, according to the presence of HBsAg and the use of HBIg. Group I was comprised of HBsAg-positive patients (n = 12) that received HBIg for more than 6 months. Group II was comprised of HBsAg-positive patients that historically have not received HBIg or have been treated irregularly for less than 3 months (n = 10). Group III was composed of 238 HBsAg-negative subjects that have not received HBIg. RESULTS: HBIg-treated patients (group I) had significantly less ACR episodes, when compared to group II and III. No differences between groups II and III were observed. CONCLUSIONS: Long-term HBIg administration contributes independently to reduce the number of ACR episodes after LT.
Resumo:
Genetic diversity and differentiation, inferred by typing the polymorphic genes coding for the merozoite surface proteins 1 (Msp-1) and 2 (Msp-2), were compared for 345 isolates belonging to seven Plasmodium falciparum populations from three continents. Both loci yielded similar estimates of genetic diversity for each population, but rather different patterns of between-population differentiation, suggesting that natural selection on these loci, rather than the transmission dynamics of P. falciparum, determines the variation in allele frequencies among populations.