63 resultados para Ceramics - Electrical conductivity
Resumo:
Wastewater application to soil is an alternative for fertilization and water reuse. However, particular care must be taken with this practice, since successive wastewater applications can cause soil salinization. Time-domain reflectometry (TDR) allows for the simultaneous and continuous monitoring of both soil water content and apparent electrical conductivity and thus for the indirect measurement of the electrical conductivity of the soil solution. This study aimed to evaluate the suitability of TDR for the indirect determination of the electrical conductivity (ECse) of the saturated soil extract by using an empirical equation for the apparatus TDR Trase 6050X1. Disturbed soil samples saturated with swine wastewater were used, at soil proportions of 0, 0.45, 0.90, 1.80, 2.70, and 3.60 m³ m-3. The probes were equipped with three handmade 0.20 cm long rods. The fit of the empirical model that associated the TDR measured values of electrical conductivity (EC TDR) to ECse was excellent, indicating this approach as suitable for the determination of electrical conductivity of the soil solution.
Resumo:
Brazilian soils have natural high chemical variability; thus, apparent electrical conductivity (ECa) can assist interpretation of crop yield variations. We aimed to select soil chemical properties with the best linear and spatial correlations to explain ECa variation in the soil using a Profiler sensor (EMP-400). The study was carried out in Sidrolândia, MS, Brazil. We analyzed the following variables: electrical conductivity - EC (2, 7, and 15 kHz), organic matter, available K, base saturation, and cation exchange capacity (CEC). Soil ECa was measured with the aid of an all-terrain vehicle, which crossed the entire area in strips spaced at 0.45 m. Soil samples were collected at the 0-20 cm depth with a total of 36 samples within about 70 ha. Classical descriptive analysis was applied to each property via SAS software, and GS+ for spatial dependence analysis. The equipment was able to simultaneously detect ECa at the different frequencies. It was also possible to establish site-specific management zones through analysis of correlation with chemical properties. We observed that CEC was the property that had the best correlation with ECa at 15 kHz.
Resumo:
ABSTRACT Soil solution samplers may have the same working principle, but they differ in relation to chemical and physical characteristics, cost and handling, and these aspects exert influence on the chemical composition of the soil solution obtained. This study was carried out to evaluate, over time, the chemical composition of solutions extracted by Suolo Acqua, with the hydrophilic membrane (HM) as a standard, using soils with contrasting characteristics, and to determine the relationship between electrical conductivity (EC) and concentration of ions and pH of soil solution samples. This study was carried out under laboratory conditions, using three soils samples with different clay and organic matter (OM) contents. Soil solution contents of F−, Cl−, NO−3, Br−, SO42−, Na+, NH4+, K+, Mg2+, Ca2+, were analyzed, as well as inorganic, organic, and total C contents, pH, and EC, in four successive sampling times. Soil solution chemical composition extracted by the Suolo Acqua sampler is similar to that collected by the HM, but the Suolo Acqua extracted more Na+ and soluble organic C than the HM solution. Solution EC, cation and anion concentrations, and soluble C levels are higher in the soil with greater clay and OM contents (Latossolo and Cambissolo in this case). Soil solution composition varied over time, with considerable changes in pH, EC, and nutrient concentrations, especially associated with soil OM. Thus, single and isolated sampling of the soil solution must be avoided, otherwise composition of the soil solution may not be correctly evaluated. Soil solution EC was regulated by pH, as well as the sum of cation and anion concentrations, and the C contents determined in the soil liquid phase.
Resumo:
The objective of this work was to evaluate the effects of temperature (10, 20, 30, 20/10 and 30/10ºC) and period of storage on electrical conductivity (EC) in four seed lots of corn (Zea mays L.), as well as the mineral composition of the soaking solution. EC test determines indirectly the integrity of seed membrane systems, and is used for the assessment of seed vigor, because this test detects the seed deterioration process since its early phase. The research comprised determinations of water content, germination, accelerated aging (AA), cold (CT) and EC vigor tests, and determinations of Ca2+, Mg2+ and K+ release to the solution, after seed soaking of four corn seed lots. The evaluations were performed each four months during a period of 16 months. For statistical analysis, a completely randomized split plot design was used with eight replications. Except for seed lots stored at 10ºC, all vigor evaluations revealed a decline in vigor, but AA and CT showed more sensitiveness to declines of seed physiological quality than EC. Potassium was the main leached ion regardless of the storage temperature.
Resumo:
Precision agriculture based on the physical and chemical properties of soil requires dense sampling to determine the spatial variability of these properties. This dense sampling is often expensive and time-consuming. One technique used to reduce sample numbers involves defining management zones based on information collected in the field. Some researchers have demonstrated the importance of soil electrical variables in defining management zones. The objective of this study was to evaluate the relationship between the spatial variability of the apparent electrical conductivity and the soil properties in the coffee production of mountain regions. Spatial variability maps were generated using a geostatistical method. Based on the spatial variability results, a correlation analysis, using bivariate Moran's index, was done to evaluate the relationship between the apparent electrical conductivity and soil properties. The maps of potassium (K) and remaining phosphorus (P-rem) were the closest to the spatial variability pattern of the apparent electrical conductivity.
Resumo:
The development of new procedures for quickly obtaining accurate information on the physiological potential of seed lots is essential for developing quality control programs for the seed industry. In this study, the effectiveness of an automated system of seedling image analysis (Seed Vigor Imaging System - SVIS) in determining the physiological potential of sun hemp seeds and its relationship with electrical conductivity tests, were evaluated. SVIS evaluations were performed three and four days after sowing and data on the vigor index and the length and uniformity of seedling growth were collected. The electrical conductivity test was made on 50 seed replicates placed in containers with 75 mL of deionised water at 25 ºC and readings were taken after 1, 2, 4, 8 and 16 hours of imbibition. Electrical conductivity measurements at 4 or 8 hours and the use of the SVIS on 3-day old seedlings can effectively detect differences in vigor between different sun hemp seed lots.
Hydraulic conductivity in response to exchangeable sodium percentage and solution salt concentration
Resumo:
Hydraulic conductivity is determined in laboratory assays to estimate the flow of water in saturated soils. However, the results of this analysis, when using distilled or deionized water, may not correspond to field conditions in soils with high concentrations of soluble salts. This study therefore set out to determine the hydraulic conductivity in laboratory conditions using solutions of different electrical conductivities in six soils representative of the State of Pernambuco, with the exchangeable sodium percentage adjusted in the range of 5-30%. The results showed an increase in hydraulic conductivity with both decreasing exchangeable sodium percentage and increasing electrical conductivity in the solution. The response to the treatments was more pronounced in soils with higher proportion of more active clays. Determination of hydraulic conductivity in laboratory is routinely performed with deionized or distilled water. However, in salt affected soils, these determinations should be carried out using solutions of electrical conductivity different from 0 dS m-1, with values close to those determined in the saturation extracts.
Resumo:
The objective of this work was to evaluate the use of the conductivity test as a means of predicting seed viability in seven Passiflora species: P. alata, P. cincinnata, P. edulis f. edulis, P. edulis f. flavicarpa, P. morifolia, P. mucronata, and P. nitida. Conductivity of non-desiccated (control), desiccated, and non-desiccated cryopreserved seeds was determined and related to their germination percentage. The obtained results suggest that the electrical conductivity test has potential as a germination predictor for P. edulis f. flavicarpa seed lots, but not for the other tested species.
Resumo:
Research with soybean seeds has revealed that the results of the electrical conductivity test may be influenced by storage temperature, particularly low temperature, such as 10ºC, suggesting that seed deterioration at low storage temperatures does not seem to be directly related to the loss of the cell membrane integrity. This study was conducted with seeds of two soybean cultivars with the objective of: a) studying the effect of different storage temperatures (10ºC; 20ºC; 25ºC; 20/10ºC and 25/10ºC) on the results of the electrical conductivity test; b) observing the behavior of fatty acids and carbohydrates during storage and studying its relation with the electrical conductivity results. Every three months, from a total of 18 months of storage, the physiological quality of seeds was evaluated using the germination, accelerated aging and electrical conductivity tests. Based on the obtained results, it can be concluded that the electrical conductivity test was not shown to be a good indicative of the deterioration process of seeds stored at low temperatures, and no direct relationship between changes in the fatty acids and carbohydrates and the behavior of the mentioned test for seeds stored at 10ºC was found.
Resumo:
Differences in levels of lignin in the plant between conventional and transgenic cultivars RR has been reported by several authors, however, there are few studies evaluating the influence of spraying of glyphosate on the lignin in the plant and RR soybean seeds. The aim of this study was to evaluate the physiological quality of RR transgenic soybean seeds and the lignin contents of plants sprayed with the herbicide glyphosate. The assays were conducted both in greenhouse and field in the municipality of Lavras, MG, in the agricultural year 2007/08. The experiment was arranged in a splitplot design with four replicates, considering the treatments hand weeding and herbicide glyphosate as plots, and five RR soybean cultivars (BRS 245 RR, BRS 247 RR, Valiosa RR, Silvânia RR and Baliza RR) as splitplots. In the greenhouse, the cultivars tested were BRS 245 RR and Valiosa RR in a randomized block design with four replicates. The sprayings were carried out at stages V3, V7 and early R5 (3L/ha). The 1000 seed weight, mechanical injury, germination and germination velocity index, emergence velocity index, accelerated aging, electrical conductivity and water soaking seed test, lignin content in the seed coat, in the stem and legumes were determined. The spraying of glyphosate herbicide, in greenhouse and field, did not alter the physiological quality of seeds and the lignin contents in the plant.
Resumo:
Besides its importance in the coffee tree nutrition, there is almost no information relating zinc nutrition and bean quality. This work evaluated the effect of zinc on the coffee yield and bean quality. The experiment was conducted with Coffea arabica L. in "Zona da Mata" region, Minas Gerais, Brazil. Twelve plots were established at random with 4 competitive plants each. Treatments included plants supplemented with zinc (eight plots) and control without zinc supplementation (four plots). Plants were subjected to two treatments: zinc supplementation and control. Yield, number of defective beans, beans attacked by berry borers, bean size, cup quality, beans zinc concentration, potassium leaching, electrical conductivity, color index, total tritable acidity, pH, chlorogenic acids contents and ferric-reducing antioxidant activity of beans were evaluated. Zinc positively affected quality of coffee beans, which presented lower percentage of medium and small beans, lower berry borer incidence, lower potassium leaching and electrical conductivity, higher contents of zinc and chlorogenic acids and higher antioxidant activity in comparison with control beans.
Resumo:
The electrical conductivity of leachates from imbibing seeds has been used as a vigor test for several species. The adaptation of this methodology to different species requires knowledge on the leaching kinetics of electrolytes. For Brazilwood seeds, the classic method was not satisfactory and rapid tests are essential because they have low storage capacity at room temperature. Leaching kinetics during seed imbibition is a function of physiological quality, presence or absence of seed coat, imbibing temperature and the initial moisture content of seed. In this study, the electrolyte leaching rate of six different categories of seeds, from two regions, was evaluated in seeds with and without seed coat and incubated with different moisture contents and at different temperatures. The results showed that the electrolyte leaching rate in Brazilwood seeds is independent of the physiological quality, the presence or absence of seed coat and imbibition temperature, but these factors changed the total amount of electrolytes leached. The leaching rate increased in the first few minutes of imbibition, suggesting that the adjustment of the methodology must consider the reduction in imbibition time, reduction in temperature, use of a controlled and slower pre-imbibition, and replacement of the imbibition solution after the first few minutes.
Resumo:
ABSTRACTThis study aimed to evaluate the influence of foliar fertilizer doses containing Mn of phenological stages of suggested application in RR soybeans, to recover management damages with glyphosate at postemergence application on seed vigor in post-harvest and post six months storage. The seeds originated from a field experiment conducted , which included two applications of glyphosate, concomitant with foliar fertilizer in growth stages V4 and V6, with 0.00, 113.50 and 227.00 mg ha-1doses of Mn2+. Germination, GSI (Germination Speed Index), electrical conductivity tests and the first count of seeds were conducted. The application of Mn did not affect the physiological quality of RR soy in postharvest. However, in post-storage, higher doses of Mn had a negative effect on tests of abnormal seedlings, GSI and electrical conductivity. The applications of Mn, regardless of the developmental stage, did not interfere in the germination and first count tests, with and without storage. The electrical conductivity test showed a higher correlation with the seed germination test in the post-harvest treatment.
Resumo:
Vibrio cholerae has been sporadically isolated from rivers in Tucumán, Argentina, since the outbreak in 1991. The aim of this study was to determine the environmental reservoir of the bacterium in these rivers, assessing the presence of Vibrio cholerae non-O1 and O1 (the latter both in its viable culturable and non culturable state) and its relationship to environmental physicochemical variables. 18 water samplings were collected in the Salí River (in Canal Norte and Banda) and the Lules River between 2003 and 2005. Physical-chemical measurements (pH, water temperature, electrical conductivity and dissolved oxygen) were examined. Vibrio cholerae was investigated with conventional culture methods and with Direct Immunofluorescence (DFA-VNC) in order to detect viable non culturable organisms. All isolated microorganisms corresponded to Vibrio cholerae non-O1 and non-O139 (Lules 26%, Canal Norte 33% and Banda 41%). The majority was found during spring and summer and correlated with temperature and pH. Non culturable Vibrio cholerae O1 was detected year round in 38 of the 54 water samples analyzed. Application of the Pearson correlation coefficient revealed that there was no relationship between positive immunofluorescence results and environmental physicochemical parameters. Genes coding for somatic antigen O1 were confirmed in all DFA-VNC-positive samples, whereas the virulence-associated ctxA and tcpA genes were confirmed in 24 samples.
Resumo:
Lakes play an important role in biogeochemical, ecological and hydrological processes in the river-floodplain system. The aim of this study was to evaluate the dynamics of the limnological conditions of Catalão Lake, an Amazon floodplain lake. Thus, some of the main limnological environment variables (O2, temperature, pH, nutrient, electrical conductivity) of the Catalão Lake were analyzed under temporal and spacial scales. The study was conducted between November/2004 and August/2005. Sampling excursion were carried out every three months; one excursion for each of the four different hydrological periods (low water, rising water, high water and falling water). Sampling points were chosen so that it could be obtained a gradient of the distance from Negro River. Limnological profiles in Catalão Lake showed generally acidic to slightly alcaline water, with low levels of dissolved oxygen and low concentrations of soluble reactive phosphorous. The Negro River seems to exert the main influence during the rising water period, while the Solimões River is the principal controlling river during peak water. The Principal Component Analysis (PCA) grouped the seasonal collections by hydrological period, showing the formation of a north-south spatial gradient within the lake in relation to the limnological variables. Multivariate dispersion analysis based on distance-to-centroid method demonstrated an increase in similarity over the course of the hydrological cycle, as the lake was inundated in response to the flood pulse of the main river channels. However, the largest spatial homogeneity in the lake was observed in the epilimnion layer, during the falling water period. The daily analysis of variation indicated an oligomitic pattern during the years in which the lake was permanently connected to the Negro River. Although Catalão Lake receives large quantities of both black water from the Negro River and sediment-filled water from the Solimões River, the physical and chemical characteristics of the lake are more similar to those of the Solimões (várzea lake) than the Negro (blackwater lake).