81 resultados para Catalase activity, unit per protein mass
Resumo:
We describe a new gasometric method to determine erythrocyte catalase activity by the measurement of the volume of oxygen produced as a result of hydrogen peroxide decomposition in a system where enzyme and substrate are separated in a special reaction test tube connected to a manometer and the reagents are mixed with a motor-driven stirrer. The position of the reagents in the test tube permits the continuous measurement of oxygen evolution from the time of mixing, without the need to stop the reaction by the addition of acid after each incubation time. The enzyme activity is reported as KHb, i.e., mg hydrogen peroxide decomposed per second per gram of hemoglobin (s-1 g Hb-1). The value obtained for catalase activity in 28 samples of hemolyzed human blood was 94.4 ± 6.17 mg H2O2 s-1 g Hb-1. The results obtained were precise and consistent, indicating that this rapid, simple and inexpensive method could be useful for research and routine work.
Resumo:
Abstract The objective of this work was to evaluate the antioxidant activity of protein hydrolysates obtained by the enzymatic hydrolysis of okara using an endopeptidase (Alcalase) and exopeptidase (Flavourzyme). The reaction was monitored by the pH-stat procedure in which five aliquots were collected during the hydrolysis by each enzyme, corresponding to different degrees of hydrolysis (DH). The antioxidant activities of the aliquots were evaluated by the ABTS, DPPH and FRAP methods. For the hydrolysates obtained using Alcalase, the antioxidant activities increased from: 68.6 to 99.5% (ABTS), 14.5 to 17.7% (DPPH) and 222.6 to 684.9 µM Trolox (FRAP), when the DH varied from 0 to 33.6%. With respect to Flavourzyme, the results were: 67.2 to 88.2% (ABTS), 9.5 to 18.5% (DPPH) and 168.0 to 360.3 µM Trolox (FRAP), when the DH increased up to 5.8%. The results showed that the protein hydrolysates had antioxidant capacities, which were influenced by the degree of hydrolysis and the type of enzyme.
Resumo:
Potassium participates in the essential processes in plant physiology, however, the effects of K sources on plant metabolism have been little studied. Also, in certain cases, K sources and concentrations may cause undesirable effects, e.g., soil salinization. The objective was to evaluate the effect of K sources and levels on the enzyme activity of the antioxidant system and protein content in eggplant (Solanum melongena L.) leaves and to determine the most suitable K sources for these physiological characteristics. The experiment was conducted in randomized blocks, in a 2 × 4 factorial design, consisting of two K sources (KCl and K2SO4) and rates (250, 500, 750, and 1000 kg ha-1 K2O), with four replications. The following variables were evaluated: plant height, number of leaves per plant, superoxide dismutase (SOD), catalase (CAT), and leaf protein content. There was an increase in CAT activity with increasing K levels until 30 days after transplanting (DAT), when K2SO4 was applied and until 60 DAT, when KCl was used; after this period, the enzyme activity decreased under both sources. The activity of SOD increased in the presence of KCl, but was reduced with the application of K2SO4. For both K sources, increasing rates reduced the protein content and number of leaves per plant, and this reduction was greater under KCl application. Thus it was concluded that KCl tends more strongly to salinize the soil than K2SO4. Both for KCl and for K2SO4, the increasing rates adversely affected the activities of CAT and SOD and the levels of leaf protein in eggplant. The potential of KCl to reduce the enzyme activity of SOD and CAT, leaf protein content and plant growth of eggplant was stronger than that of K2SO4.
Resumo:
It has been shown previously that the laticifer fluid of Calotropis procera (Ait.) R.Br. is highly toxic to the egg hatching and larval development of Aedes aegypti L. In the present study, the larvicidal potential of other laticifer fluids obtained from Cryptostegia grandiflora R.Br., Plumeria rubra L. and Euphorbia tirucalli L. was evaluated. We attempted to correlate larvicidal activity with the presence of endogenous proteolytic activity in the protein fraction of the fluids. After collection, the fluids were processed by centrifugation and dialysis to obtain the soluble laticifer protein (LP) fractions and eliminate water insoluble and low molecular mass molecules. LP did not visibly affect egg hatching at the doses assayed. LP from Cr. grandiflora exhibited the highest larval toxicity, while P. rubra was almost inactive. E. tirucalli was slightly active, but its activity could not be correlated to proteins since no protein was detected in the fluid. The larvicidal effects of LP from C. procera and Cr. grandiflora showed a significant relationship with the proteolytic activity of cysteine proteinases, which are present in both materials. A purified cysteine proteinase (papain) from the latex of Carica papaya (obtained from Sigma) was similarly effective, whereas trypsin and chymotrypsin (both serine proteinases) were ineffective. The results provide evidence for the involvement of cysteine proteinase activity in the larvicidal action of some laticifer fluids. C. procera is an invasive species found in areas infested with Ae. aegypti and thus could prove useful for combating mosquito proliferation. This is the first report to present evidence for the use of proteolytic enzymes as chemical agents to destroy Ae. aegypti larvae.
Resumo:
The localization of the xanthine oxidase (X.O.) and xanthine dehydrogenase (X.D.) activities in rat liver have been studied using separation of cytoplasmic particles into fractions by differential centrifugation. The results clearly demonstrate that practically all the enzymic activity is present in the supernatant fluid corresponding to the cell sap containing the soluble proteins of the cell. No activity could be detected for the nuclear, mitocondrial and microsomal fractions. The enzymatic activity of the mixture of the four factions was 102 per cent of that of the original homogenate. The distribution of the xanthine dehydrogenase in the protein fractions of the rat serum was accomplished in preliminary experiments by means of 50% ammonium sulphate precipitation and subsequent dialysis against water. All enzymatic activity was confined to the globulin fractions of the serum. Paper electrophoresis was performed and the protein and lipoprotein fractions determined. A method for the localization of the X.D. activity in the protein fractions separated by paper electrophoresis was developed. The results obtained suggest that xanthine dehydrogenase is localized in the globulin fractions possessing mobilities of [alpha 1], [beta] and [gamma] globulins and are probably bound to the lipoproteins.
Resumo:
The PyAG1 gene, identified by the screening of a Plasmodium yoelii genomic DNA library with a rhoptry-specific Mab, encodes a protein with a zinc finger structure immediately followed by the consensus sequence of the Arf GAP catalytic site. The serum of mice immunized with the recombinant protein recognized specifically the rhoptries of the late infected erythrocytic stages. Blast analysis using the Genbank database gave the highest scores with four proteins presenting an Arf1 GAP activity. If presenting also this activity, the PyAG1 protein could be involved in the regulation of the secreted protein vesicular transport and, consequently, in the rhoptry biogenesis.
Resumo:
Nitrate reductase is the first enzyme in the pathway of nitrate reduction by plants, followed by glutamine synthetase, which incorporates ammonia to glutamine. The purpose of this study was to evaluate the nitrate reductase and glutamine synthetase activity, total soluble protein content, N and Ni content in coffee leaves during fruit development under field conditions to establish new informations to help assess the N nutritional status and fertilizer management. The experimental design was in randomized complete blocks, arranged in a 3 x 6 factorial design, with five replications. The treatments consisted of 3 N rates (0 - control, 150 and 300 kg ha-1) and six evaluation periods (January, February, March, April, May, and June) in six-year-old coffee (Coffea arabica L.) plants of Catuaí Vermelho IAC 44 cv. The nitrate reductase and glutamine synthetase activities, leaf soluble protein, and N concentrations increased linearly with the N rates. During fruit development, the enzyme activity, leaf soluble protein and N content decreased, due to the leaf senescence process caused by nutrient mobilization to other organs, e.g, to the berries. Leaf Ni increased during fruit development. Beans and raisin-fruits of plants well-supplied with N had higher Ni contents. Enzyme activities, total leaf N and leaf soluble protein, evaluated during the green fruit stage in March, were significantly correlated with coffee yield. These variables can therefore be useful for an early assessment of the coffee N nutritional status as well as coffee yield and N fertilization management.
Resumo:
Nitrogen and K deficiency are among the most yield limiting factors in Brazilian pastures. The lack of these nutrients can hamper the chlorophyll biosynthesis and N content in plant tissues. A greenhouse experiment was carried out to evaluate the relationship among N and K concentrations, the indirect determination of chlorophyll content (SPAD readings), nitrate reductase activity (RNO3-) in newly expanded leaf lamina (NL) and the dry matter yield for plant tops of Mombaça grass (Panicum maximum Jacq.). A fractionated 5² factorial design was used, with 13 combinations of N and K rates in the nutrient solution. The experimental units were arranged in a randomized block design, with four replications. Plants were harvested twice. The first harvest occurred 36 days after seedling transplanting and the second 29 days after the first. Significance occurred for the interaction between the N and K rates to SPAD readings and to RNO3- assessment taken on the NL during the first growth. Besides, RNO3- and SPAD readings increased only with the NL N concentration, reaching the highest values of both variables up to about 25 g kg-1, but were ratively constant at higher leaf N. Significant relationships either between SPAD readings or RNO3- activity and shoot dry mass weight were also observed. The critical levels of N concentration in the NL were, respectively, 22 and 17g kg-1 in the first and second harvest. Thus, SPAD instrument and RNO3- assessment can be used as complementary tools to evaluate the N status in forage grass.
Resumo:
The objective of this work was to evaluate the effect of feed deprivation and refeeding with diets containing different energy to protein ratios (E/P) on the performance and physiology of juvenile tambaqui (Colossoma macropomum). A 4x2 factorial arrangement with three replicates was used, with four E/P ratios (11.5, 10.5, 9.5, and 8.5 kcal g-1 digestible energy per protein) and two feeding regimens (with and without deprivation), during 60 days. Fish from the food-deprived group were fasted for 14 days and refed from the fifteenth to the sixtieth day, whereas the remaining fish were fed for 60 days. At the end of the experimental period, weight of fish subjected to food deprivation was lower than that of those continuously fed; however, this condition did not influence the physiological parameters analyzed. Tambaqui fed 11.5 kcal g-1 achieved lower final weight than those fed with the other diets, in both regimens. Among the physiological parameters, only plasma protein presented significant increase in fish fed 8.5 kcal g-1, in both feeding regimens, probably due to the higher dietary protein concentration. These results indicate that fish show a partial compensatory growth, and that 10.5 kcal g-1 can be recommended for the diet of juvenile tambaqui.
Resumo:
The efficiency and reliability of radioactive fucose as a specific label for newly synthesized glycoproteins were investigated. Young adult male rabbits were injected intravitreally with [3H]-fucose, [3H]-galactose, [3H]-mannose, N-acetyl-[3H]-glucosamine or N-acetyl-[3H]-mannosamine, and killed 40 h after injection. In another series of experiments rabbits were injected with either [3H]-fucose or several tritiated amino acids and the specific activity of the vitreous proteins was determined. Vitreous samples were also processed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and histological sections of retina, ciliary body and lens (the eye components around the vitreous body) were processed for radioautography. The specific activity (counts per minute per microgram of protein) of the glycoproteins labeled with [3H]-fucose was always much higher than that of the proteins labeled with any of the other monosaccharides or any of the amino acids. There was a good correlation between the specific activity of the proteins labeled by any of the above precursors and the density of the vitreous protein bands detected by fluorography. This was also true for the silver grain density on the radioautographs of the histological sections of retina, ciliary body and lens. The contribution of radioautography (after [3H]-fucose administration) to the elucidation of the biogenesis of lysosomal and membrane glycoproteins and to the determination of the intracellular process of protein secretion was reviewed. Radioactive fucose is the precursor of choice for studying glycoprotein secretion because it is specific, efficient and practical for this purpose
Resumo:
Thiobarbituric acid reactant substances (TBARs) content, and the activities of glucose-6-phosphate dehydrogenase (G6PDh), citrate synthase (CS), Cu/Zn- and Mn-superoxide dismutase (SOD), catalase, and glutathione peroxidase (GPX) were measured in the lymphoid organs (thymus, spleen, and mesenteric lymph nodes (MLN)) and skeletal muscles (gastrocnemius and soleus) of adrenodemedullated (ADM) rats. The results were compared with those obtained for sham-operated rats. TBARs content was reduced by adrenodemedullation in the lymphoid organs (MLN (28%), thymus (40%) and spleen (42%)) and gastrocnemius muscle (67%). G6PDh activity was enhanced in the MLN (69%) and reduced in the spleen (28%) and soleus muscle (75%). CS activity was reduced in all tissues (MLN (75%), spleen (71%), gastrocnemius (61%) and soleus (43%)), except in the thymus which displayed an increment of 56%. Cu/Zn-SOD activity was increased in the MLN (126%), thymus (223%), spleen (80%) and gastrocnemius muscle (360%) and was reduced in the soleus muscle (31%). Mn-SOD activity was decreased in the MLN (67%) and spleen (26%) and increased in the thymus (142%), whereas catalase activity was reduced in the MLN (76%), thymus (54%) and soleus muscle (47%). It is particularly noteworthy that in ADM rats the activity of glutathione peroxidase was not detectable by the method used. These data are consistent with the possibility that epinephrine might play a role in the oxidative stress of the lymphoid organs. Whether this fact represents an important mechanism for the establishment of impaired immune function during stress remains to be elucidated.
Resumo:
The purpose of the present study was to investigate the effects of experimental diabetes on the oxidant and antioxidant status of latissimus dorsi (LD) muscles of male Wistar rats (220 ± 5 g, N = 11). Short-term (5 days) diabetes was induced by a single injection of streptozotocin (STZ, 50 mg/kg, iv; glycemia >300 mg/dl). LD muscle of STZ-diabetic rats presented higher levels of thiobarbituric acid reactive substances (TBARS) and chemiluminescence (0.36 ± 0.02 nmol/mg protein and 14706 ± 1581 cps/mg protein) than LD muscle of normal rats (0.23 ± 0.04 nmol/mg protein and 7389 ± 1355 cps/mg protein). Diabetes induced a 92% increase in catalase and a 27% increase in glutathione S-transferase activities in LD muscle. Glutathione peroxidase activity was reduced (58%) in STZ-diabetic rats and superoxide dismutase activity was similar in LD muscle of both groups. A positive correlation was obtained between catalase activity and the oxidative stress of LD, as evaluated in terms of TBARS (r = 0.78) and by chemiluminescence (r = 0.89). Catalase activity also correlated inversely with glutathione peroxidase activity (r = 0.79). These data suggest that an increased oxidative stress in LD muscle of diabetic rats may be related to skeletal muscle myopathy.
Resumo:
Previous studies have demonstrated that some components of the leukocyte cell membrane, CR3 (Mac-1, CD11b/CD18) and p150/95, are able to bind to denatured proteins. Thus, it is of interest to know which effector functions of these cells can be triggered by these receptors when they interact with particles or surfaces covered with denatured proteins. In the present study we analyzed their possible role as mediators of phagocytosis of red cells covered with denatured bovine serum albumin (BSA) by mouse peritoneal macrophages. We observed that a) macrophages are able to recognize (bind to) these red cells, b) this interaction can be inhibited by denatured BSA in the fluid phase, c) there is no phagocytosis of these particles by normal macrophages, d) phagocytosis mediated by denatured BSA can be, however, effectively triggered in inflammatory macrophages induced by glycogen or in macrophages activated in vivo with LPS, and e) this phagocytic capacity is strongly dependent on the activity of tyrosine protein kinases in its signal transduction pathway, as demonstrated by using three kinds of enzyme inhibitors (genistein, quercetin and herbimycin A).
Resumo:
The aim of the present study was to investigate the effects of daily intragastric administration of bullfrog oil (oleic, linoleic and palmitoleic acid-rich oil), corresponding to 0.4% of body weight for four weeks, on fatty acid composition and oxidative stress (lipid peroxidation and catalase activity) in mouse liver. The activities of aspartate aminotransferase (AST), alkaline phosphatase (ALP), alanine aminotransferase (ALT), and gamma-glutamyltransferase (GGT), biomarkers of tissue injury, were determined in liver homogenates and serum. The proportions of 18:2n-6, 20:4n-6, 20:5n-3, and 22:6n-3 (polyunsaturated fatty acids, from 37 to 60%) in the total fatty acid content were increased in the liver of the bullfrog oil-treated group (P < 0.05) compared to control. At the same time, a significant decrease in the relative abundance of 14:0, 16:0, and 18:0 (saturated fatty acids, from 49 to 25%) was observed. The hepatic content of thiobarbituric acid reactive substances (TBARS) was increased from 2.3 ± 0.2 to 12.3 ± 0.3 nmol TBA-MDA/mg protein and catalase activity was increased from 840 ± 32 to 1110 ± 45 µmol reduced H2O2 min-1 mg protein-1 in the treated group. Bullfrog oil administration increased AST and ALP activities in the liver (from 234.10 ± 0.12 to 342.84 ± 0.13 and 9.38 ± 0.60 to 20.06 ± 0.27 U/g, respectively) and in serum (from 95.41 ± 6.13 to 120.32 ± 3.15 and 234.75 ± 11.5 to 254.41 ± 2.73 U/l, respectively), suggesting that this treatment induced tissue damage. ALT activity was increased from 287.28 ± 0.29 to 315.98 ± 0.34 U/g in the liver but remained unchanged in serum, whereas the GGT activity was not affected by bullfrog oil treatment. Therefore, despite the interesting modulation of fatty acids by bullfrog oil, a possible therapeutic use requires care since some adverse effects were observed in liver.
Resumo:
Chaperone members of the protein disulfide isomerase family can catalyze the thiol-disulfide exchange reaction with pairs of cysteines. There are 14 protein disulfide isomerase family members, but the ability to catalyze a thiol disulfide exchange reaction has not been demonstrated for all of them. Human endoplasmic reticulum protein chaperone thio-oxidoreductase (ERp18) shows partial oxidative activity as a protein disulfide isomerase. The aim of the present study was to evaluate the participation of ERp18 in gonadotropin-releasing hormone receptor (GnRHR) expression at the plasma membrane. Cos-7 cells were cultured, plated, and transfected with 25 ng (unless indicated) wild-type human GnRHR (hGnRHR) or mutant GnRHR (Cys14Ala and Cys200Ala) and pcDNA3.1 without insert (empty vector) or ERp18 cDNA (75 ng/well), pre-loaded for 18 h with 1 µCi myo-[2-3H(N)]-inositol in 0.25 mL DMEM and treated for 2 h with buserelin. We observed a decrease in maximal inositol phosphate (IP) production in response to buserelin in the cells co-transfected with hGnRHR, and a decrease from 20 to 75 ng of ERp18 compared with cells co-transfected with hGnRHR and empty vector. The decrease in maximal IP was proportional to the amount of ERp18 DNA over the range examined. Mutants (Cys14Ala and Cys200Ala) that could not form the Cys14-Cys200 bridge essential for plasma membrane routing of the hGnRHR did not modify maximal IP production when they were co-transfected with ERp18. These results suggest that ERp18 has a reduction role on disulfide bonds in wild-type hGnRHR folding.