70 resultados para AIRWAY HYPERREACTIVITY
Resumo:
Various follow-up studies of children hospitalized with bronchiolitis caused by respiratory syncytial virus have demonstrated that a significant proportion of infants (50%) have recurrent wheezing during childhood. Nevertheless, the relationship between these two entities, if any, has not been established. In order to explain this observation, several hypotheses have been proposed. The first suggests that some children could have an individual predisposition to bronchiolitis caused by respiratory syncytial virus and recurrent wheezing. The virus could be a marker of this condition, and the individual predisposition could in turn be related to an individual hypersensitivity to common allergens (atopy), airway hyperreactivity, or to some disorder related to pulmonary anatomy or physiology that was present before the acute episode of bronchiolitis. Another hypothesis proposes that respiratory syncytial virus could be directly responsible for recurrent wheezing. During an episode of bronchiolitis, the damage in the airway mucosa caused by the vital inflammatory response to infection contributes to sensitivity to other allergens or exposes irritant receptors, resulting in recurrent wheezing. For this review, we analyzed the studies that discuss these hypotheses with the purpose of clarifying the mechanisms for the important issue of recurrent wheezing in childhood.
Resumo:
Interleukin 5 (IL-5) is a critical cytokine for the maturation of eosinophil precursors to eosinophils in the bone marrow and those eosinophils then accumulate in the lungs during asthma. We have studied anti IL-5 antibodies on allergic responses in mice, guinea pigs and monkeys and are extending this experiment into humans with a humanized antibody. In a monkey model of pulmonary inflammation and airway hyperreactivity, we found that the TRFK-5 antibody blocked both responses for three months following a single dose of 0.3 mg/kg, i.v. This antibody also blocked lung eosinophilia in mice by inhibiting release from the bone marrow. To facilitate multiple dosing and to reduce immunogenicity in humans, we prepared Sch 55700, a humanized antibody against IL-5. Sch 55700 was also active against lung eosinophilia in allergic monkeys and mice and against pulmonary eosinophilia and airway hyperresponsiveness in guinea pigs. Furthermore, as opposed to steroids, Sch 55700 did not cause immunosuppression in guinea pigs. Studies with this antibody in humans will be critical to establishing the therapeutic potential of IL-5 inhibition.
Resumo:
Asthma results from allergen-driven intrapulmonary Th2 response, and is characterized by intermittent airway obstruction, airway hyperreactivity (AHR), and airway inflammation. Accumulating evidence indicates that inflammatory diseases of the respiratory tract are commonly associated with elevated production of nitric oxide (NO). It has been shown that exhaled NO may be derived from constitutive NO synthase (NOS) such as endothelial (NOS 3) and neural (NOS 1) in normal airways, while increased levels of NO in asthma appear to be derived from inducible NOS2 expressed in the inflamed airways. Nevertheless, the functional role of NO and NOS isoforms in the regulation of AHR and airway inflammation in human or experimental models of asthma is still highly controversial. In the present commentary we will discuss the role of lipopolysaccharides contamination of allergens as key element in the controversy related to the regulation of NOS2 activity in experimental asthma.
Resumo:
OBJECTIVE: To compare the effects of 3 types of noninvasive respiratory support systems in the treatment of acute pulmonary edema: oxygen therapy (O2), continuous positive airway pressure, and bilevel positive pressure ventilation. METHODS: We studied prospectively 26 patients with acute pulmonary edema, who were randomized into 1 of 3 types of respiratory support groups. Age was 69±7 years. Ten patients were treated with oxygen, 9 with continuous positive airway pressure, and 7 with noninvasive bilevel positive pressure ventilation. All patients received medicamentous therapy according to the Advanced Cardiac Life Support protocol. Our primary aim was to assess the need for orotracheal intubation. We also assessed the following: heart and respiration rates, blood pressure, PaO2, PaCO2, and pH at begining, and at 10 and 60 minutes after starting the protocol. RESULTS: At 10 minutes, the patients in the bilevel positive pressure ventilation group had the highest PaO2 and the lowest respiration rates; the patients in the O2 group had the highest PaCO2 and the lowest pH (p<0.05). Four patients in the O2 group, 3 patients in the continuous positive pressure group, and none in the bilevel positive pressure ventilation group were intubated (p<0.05). CONCLUSION: Noninvasive bilevel positive pressure ventilation was effective in the treatment of acute cardiogenic pulmonary edema, accelerated the recovery of vital signs and blood gas data, and avoided intubation.
Resumo:
Mice infected with T. cruzi strain, acquire a high level of susceptibility to the effects of bacterial gram-negative LPS. The LD50 of adult female SW mice to LPS from S. typhosa, decreases from 450 to 2,5 mcg 10-12 days after T. cruzi infection. This hyperreactivity to LPS induced by T. cruzi presents all the characteristics of that found in infection caused by many other agents. During the acaute phase of experimental infection with T. cruzi Y strain, mice generally die with a hypovolemic shock very similar to that induced in uninfected animals injected with an adequate dose of bacterial endotoxin. There is evidence for and against the hypothesis that LPS absorbed from the instestinal tract may be involved in the mechanism of death of mice during the acute phase of T. cruzi infection.
Resumo:
Clinical and experimental investigations suggest that allergen-specific CD4+ T-cells, IgE and the cytokines IL-4 and IL-5 play central roles in initiating and sustaining an asthmatic response by regulating the recruitment and/or activation of airways mast cells and eosinophils. IL-5 plays a unique role in eosinophil development and activation and has been strongly implicated in the aetiology of asthma. The present paper summarizes our recent investigations on the role of these cytokines using cytokine knockout mice and a mouse aeroallergen model. Investigations in IL-5-/- mice indicate that this cytokine is critical for regulating aeroallergen-induced eosinophilia, the onset of lung damage and airways hyperreactivity during allergic airways inflammation. While IL-4 and allergen-specific IgE play important roles in the regulation of allergic disease, recent investigations in IL4-/- mice suggest that allergic airways inflammation can occur via pathways which operate independently of these molecules. Activation of these IL-4 independent pathways are also intimately associated with CD4+ T-cells, IL-5 signal transduction and eosinophilic inflammation. Such IL-5 regulated pathways may also play a substantive role in the aetiology of asthma. Thus, evidence is now emerging that allergic airways disease is regulated by humoral and cell mediated processes. The central role of IL-5 in both components of allergic disease highlights the requirements for highly specific therapeutic agents which inhibit the production or action of this cytokine.
Resumo:
Eosinophils play a central role in the establishment and outcome of bronchial inflammation in asthma. Animal models of allergy are useful to answer questions related to mechanisms of allergic inflammation. We have used models of sensitized and boosted guinea pigs to investigate the nature of bronchial inflammation in allergic conditions. These animals develop marked bronchial infiltration composed mainly of CD4+ T-lymphocytes and eosinophils. Further provocation with antigen leads to degranulation of eosinophils and ulceration of the bronchial mucosa. Eosinophils are the first cells to increase in numbers in the mucosa after antigen challenge and depend on the expression of alpha 4 integrin to adhere to the vascular endothelium and transmigrate to the mucosa. Blockage of alpha4 integrin expression with specific antibody prevents not only the transmigration of eosinophils but also the development of bronchial hyperresponsiveness (BHR) to agonists in sensitized and challenged animals, clearly suggesting a role for this cell type in this altered functional state. Moreover, introduction of antibody against Major Basic Protein into the airways also prevents the development of BHR in similar model. BHR can also be suppressed by the use of FK506, an immunosuppressor that reduces in almost 100% the infiltration of eosinophils into the bronchi of allergic animals. These data support the concept that eosinophil is the most important pro-inflammatory factor in bronchial inflammation associated with allergy.
Resumo:
Phosphodiesterases (PDEs) are responsible for the breakdown of intracellular cyclic nucleotides, from which PDE4 are the major cyclic AMP metabolizing isoenzymes found in inflammatory and immune cells. This generated greatest interest on PDE4 as a potential target to treat lung inflammatory diseases. For example, cigarette smoke-induced neutrophilia in BAL was dose and time dependently reduced by cilomilast. Beside the undesired side effects associated with the first generation of PDE4 inhibitors, the second generation of selective inhibitors such as cilomilast and roflumilast showed clinical efficacy in asthma and chronic obstrutive pulmonary diseases trials, thus re-enhancing the interest on these classes of compounds. However, the ability of PDE4 inhibitors to prevent or modulate the airway remodelling remains relatively unexplored. We demonstrated that selective PDE4 inhibitor RP 73-401 reduced matrix metalloproteinase (MMP)-9 activity and TGF-beta1 release during LPS-induced lung injury in mice and that CI-1044 inhibited the production of MMP-1 and MMP-2 from human lung fibroblasts stimulated by pro-inflammatory cytokines. Since inflammatory diseases of the bronchial airways are associated with destruction of normal tissue structure, our data suggest a therapeutic benefit for PDE4 inhibitors in tissue remodelling associated with chronic lung diseases.
Resumo:
AbstractOBJECTIVETo analyze the care implemented by the nursing team to promote the safety of adult patients and prevention of skin and mucosal lesions associated with the presence of lower airways invasive devices.METHODStudy with qualitative and quantitative approach, descriptive and exploratory type, whose investigative scenarios were adult inpatient units of a hospital in the West Frontier of Rio Grande do Sul. The study subjects consisted of nurses, nursing technicians and nursing assistants.RESULTSA total of 118 professionals were interviewed. We highlight the observed specific care with endotracheal tube and tracheostomy, management and assessment of the cuff and the criteria used to secretion aspiration.CONCLUSIONThere is a superficial nursing work in the patient direct care and a differentiation in relation to the perception of nurse technicians, especially those working in the intensive care unit, who presented major property and view of the patient's clinical status.
Resumo:
We have investigated the effects of L-arginine, D-arginine and L-lysine on airway smooth muscle responsiveness to spasmogens in vitro. Both L-arginine and D-arginine (100 mM) significantly reduced the contractile potency and maximal contractile response to histamine but not to methacholine or potassium chloride in guinea-pig epithelium-denuded isolated trachea. Similarly, the contractile response to histamine was significantly reduced by L-arginine (100 mM) in rabbit epithelium-denuded isolated bronchus. The amino acid L-lysine (100 mM) failed to significantly alter the contractile potency of histamine in guinea-pig isolated trachea (P>0.05). In guinea-pig isolated trachea precontracted with histamine, both L-arginine and D-arginine produced a concentration-dependent relaxation which was not significantly altered by epithelium removal or by the presence of the nitric oxide synthase inhibitor, NG-nitro L-arginine methyl ester (L-NAME; 50 µM). Thus, at very high concentrations, arginine exhibit a non-competitive antagonism of histamine-induced contraction of isolated airway preparations that was independent of the generation of nitric oxide and was not dependent on charge. These observations confirm previous studies of cutaneous permeability responses and of contractile responses of guinea-pig isolated ileal smooth muscle. Taken together, the data suggest that high concentrations of arginine can exert an anti-histamine effect.
Resumo:
A transitory increase in blood pressure (BP) is observed following upper airway surgery for obstructive sleep apnea syndrome but the mechanisms implicated are not yet well understood. The objective of the present study was to evaluate changes in BP and heart rate (HR) and putative factors after uvulopalatopharyngoplasty and septoplasty in normotensive snorers. Patients (N = 10) were instrumented for 24-h ambulatory BP monitoring, nocturnal respiratory monitoring and urinary catecholamine level evaluation one day before surgery and on the day of surgery. The influence of postsurgery pain was prevented by analgesic therapy as confirmed using a visual analog scale of pain. Compared with preoperative values, there was a significant (P < 0.05) increase in nighttime but not daytime systolic BP (119 ± 5 vs 107 ± 3 mmHg), diastolic BP (72 ± 4 vs 67 ± 2 mmHg), HR (67 ± 4 vs 57 ± 2 bpm), respiratory disturbance index (RDI) characterized by apnea-hypopnea (30 ± 10 vs 13 ± 4 events/h of sleep) and norepinephrine levels (22.0 ± 4.7 vs 11.0 ± 1.3 µg l-1 12 h-1) after surgery. A positive correlation was found between individual variations of BP and individual variations of RDI (r = 0.81, P < 0.01) but not between BP or RDI and catecholamines. The visual analog scale of pain showed similar stress levels on the day before and after surgery (6.0 ± 0.8 vs 5.0 ± 0.9 cm, respectively). These data strongly suggest that the cardiovascular changes observed in patients who underwent uvulopalatopharyngoplasty and septoplasty were due to the increased postoperative RDI.
Resumo:
Matrix metalloproteinases (MMPs) are a major group of proteases known to regulate extracellular matrix (ECM) turnover and so they have been suggested to be important in the process of lung disease associated with tissue remodeling. This has led to the concept that modulation of airway remodeling including excessive proteolysis damage to the tissue may be of interest for future treatment. Within the MMP family, macrophage elastase (MMP-12) is able to degrade ECM components such as elastin and is involved in tissue remodeling processes in chronic obstructive pulmonary disease including emphysema. Pulmonary fibrosis has an aggressive course and is usually fatal within an average of 3 to 6 years after the onset of symptoms. Pulmonary fibrosis is associated with deposition of ECM components in the lung interstitium. The excessive airway remodeling as a result of an imbalance in the equilibrium of the normal processes of synthesis and degradation of ECM components could justify anti-protease treatments. Indeed, the correlation of the differences in hydroxyproline levels in the lungs of bleomycin-treated mice strongly suggests that a reduced molar pro-MMP-9/TIMP-1 ratio in bronchoalveolar lavage fluid is associated with collagen deposition, beginning as early as the inflammatory events at day 1 after bleomycin administration. Finally, these observations emphasize that effective treatment of these disorders must be started early during the natural history of the disease, prior to the development of extensive lung destruction and fibrosis.