3 resultados para urea nitrogen blood level

em Bioline International


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Ureteropelvic junction obstruction (UPJO) is one of the most common causes of urinary tract obstruction in children. Several methods are used to diagnose upper urinary tract obstruction including renal ultrasonography (US), intravenous pyelogram (IVP), diuretic renography (DR), magnetic resonance urography (MRU) and antegrade or retrograde pyelography. Nowadays it is suggested to use diuretic renography as the best method for diagnosing of UPJO. There is no comparative study between IVP and DR scan for diagnosis of UPJO in children. Objectives: The aim of the present study was to compare IVP with furosemide injection and diuretic renography in diagnosis of clinically significant UPJO. Patients and Methods: This was a cross sectional study performed in 153 UPJO suspected children (121 boys, 32 girls) based on US findings in cases presented with urinary tract infection (UTI), prenatal hydronephrosis, abdominal/flank pain, abdominal mass and hematuria. Renal ultrasound was used as an initial screening tool for detection of urinary tract abnormality. Vesicoureteral reflux (VUR) was ruled out by voiding cystourethrography (VCUG). Serum creatinin, blood urea nitrogen, urinalysis and urine culture was screened in all cases. IVP with furosemide and DR were performed as soon as possible after the mentioned workup. Results: During a five year period, 46 out of 153 patients were diagnosed as UPJO based on diuretic renography: the age ranged from 4 months to 13 years (mean: 3.1 ± 0.78 years). There was a significant higher (76%) proportion of UPJO in the boys and in the left side (78%). The sensitivity of IVP with furosemide injection in diagnosis of UPJO was 91.3% whereas DR was accepted as standard for diagnostic procedure in diagnosis of UPJO. Conclusions: Although DR is accepted as the best method for diagnosis of UPJO, we found a small sensitivity difference between IVP and DR in kidneys with normal or near normal function. In many settings such as small cities lacking facilities for advanced isotope imaging technology, use of IVP with diuretic maybe an acceptable procedure for diagnosis of UPJO.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: To investigate the anti-hyperuricemic effect of Dioscorea tokoro Makino extract (DTME) in potassium oxonate-induced hyperuricemic mice. Method: The effect of DTME was investigated in the hyperuricemic mice induced by potassium oxonate. DTME. The extract was administered to the mice daily at doses of 220, 440 and 880 mg/kg for 10 days; allopurinol (5 mg/kg) was given as positive control. Serum and urine levels of uric acid and creatinine were determined by colorimetric method. Simultaneously, protein levels of urate transporter 1 (URAT1) and organic anion transporter 1 (OAT1) in the rat kidney were analyzed by Western blotting. Results: Compared with control, a high dose of DTME inhibited xanthine oxidase (XOD) activity in both serum (18.12 ± 1.33 U/L) and in liver (70.15 ± 5.20 U/g protein) (p < 0.05); decreased levels of serum uric acid (2.04 ± 0.64 mg/L) (p < 0.05), serum creatinine (0.35 ± 0.18 μmol/L) and blood urea nitrogen (BUN) (8.83 ± 0.71 mmol/L) (p < 0.05). Furthermore, the extract increased levels of urine uric acid (38.34 ± 8.23 mg/L), urine creatinine (34.38 ± 1.98 mmol/L), down regulated of URAT1 and up regulated of OAT1 protein expressions (p < 0.05) in the renal tissue of hyperuricemic mice. Conclusion: DTME improves renal dysfunction in rats by regulating renal urate transporters in hyperuricemic rats. This may find therapeutic application in antihypertensive therapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: To evaluate the preventive and therapeutic effects of inulin supplementation in Naval Medical Research Institute (NMRI) male mice fed with high fat diet. Methods: NMRI male mice (n = 36) were divided into three groups. Control (C1), obese (O1) and experimental mice (E1) were fed during 8 weeks as follows: C1 with normal rodent pellet, O1 with high fat diet, and E1 with high fat diet plus 20 % inulin. C2, O2, and E2 were fed as follows: C2 with normal rodent pellets for 12 weeks; O2 with high fat diet during 8 weeks and switched to normal rodent pellet during next 4 weeks; and E2 with high fat diet over a period of 8 weeks and switched to normal rodent pellet plus 20 % inulin for 4 weeks. Body weight, serum glucose, triglycerides, total cholesterol, high density lipoprotein (HDL), low density lipoprotein (LDL), and hepatic α-amylase gene expression were measured. Results: Groups receiving high fat diet showed higher weight (30.71 ± 0.66 g in O2, p < 0.001), nonfasting blood glucose levels (257.69 ± 5.10 mg/dl in O2, p < 0.001), TG (282.15 ± 1.83 mg/dl in O2, (p < 0.001)), and cholesterol levels (335.72 ± 2.23 mg/dl in O2, (p < 0.001)), compared with control. In C2 group, mean body weight was 25.71 ± 0.54 g, non-fasting blood level 161.54 ± 4.48 mg/dl, TG level 214.29 ± 5.54 mg/dl, and cholesterol level 164.29 ±4.57 mg/dl. Compared to obese group, mice receiving inulin showed lower blood glucose levels (223.10 ± 8.7 mg/dl in E2, p < 0.001), body weight (27.86 ± 0.57 g in E2, p < 0.001), TG (232.14 ± 4.02 mg/dl in E2, p < 0.001) and cholesterol (249.97 ± 2.28 in E2, p < 0.001). A slight decrease in hepatic α-amylase gene expression was observed only in E1. Conclusion: Besides its sweetening properties, inulin may also find use as a potential anti-obesity compound.