5 resultados para sepsis, cardiomyopathy, venoarterial pCO2 difference, myocardial dysfunction.
em Bioline International
Resumo:
Background: Procalcitonin (PCT) kinetics is a good prognosis marker in infectious diseases, but few studies of children sepsis have been performed. Objectives: The aim of our study was to examine kinetics of procalcitonin, to evaluate its relationship with severity and to analyze its usefulness in the prediction of multiorgan dysfunction syndrome (MODS). Patients and Methods: Prospective observational study in an 8-bed pediatric intensive care unit of a university hospital. Sixty-two children aged 0-19 years with systemic inflammatory response syndrome or septic states. The degree of severity was evaluated according pediatric logistic organ dysfunction (PELOD) score. Blood tests to determine levels of PCT were taken if the patients had the criteria of systemic inflammatory response syndrome or sepsis. The serum to determine levels of PCT in control group has been taken from patients undergoing elective surgery. Results: Higher values of PCT were identified in patients with PELOD score 12 and more compared to those with PELOD < 12 (P = 0.016). Similarly, higher PCT values were found in patients who developed MODS in contrast to those without MODS (P = 0.011). According to ROC analysis cut-off value of 4.05 ng/mL was found to best discriminate patients with PELOD < 12 and PELOD ≥ 12 with AUC = 0.675 (P = 0.035). Effect of procalcitonin levels on mortality was not demonstrated. Conclusions: Levels of procalcitonin from day 1 to day 5 are related to the severity and multiorgan dysfunction syndrome in children.
Resumo:
Background: Evaluation of myocardial function by speckle-tracking echocardiography is a new method for the early diagnosis of systolic dysfunction. Objectives: We aimed to determine myocardial speckle-tracking echocardiography indices in Kawasaki Disease (KD) patients and compare them with the same indices in control subjects. Patients and Methods: Thirty-two patients (65.5% males) with KD and 19 control subjects with normal echocardiography participated in this study. After their demographic characteristics and clinical findings were recorded, all the participants underwent transthoracic echocardiography. Strain (S), Strain Rate (SR), Time to Peak Strain (TPS), and Strain Rate (TPSR), longitudinal velocity and view point velocity images in the two, three, and four-chamber views were semi-automatically obtained via speckle-tracking echocardiography. Results: Among the patients, Twenty-four cases (75%) were younger than 4 years. Mean global S and SR was significantly reduced in the KD patients compared to controls (17.03 ± 1.28 vs. 20.22 ± 2.14% and 1.66 ± 0.16 vs. 1.97 ± 0.25 1/second, respectively), while there were no significant differences regarding mean TPS, TPSR, longitudinal velocity and view point velocity. Using repeated measure of analysis of variances, we observed that S and SR decreased from base to apical level in both groups. The change in the pattern of age adjusted mean S and SR across levels was significantly different between the groups (P < 0.001 for both parameters). Conclusions: We showed changes in S and SR assessed in KD patients versus control subjects in the acute phase of KD. However, we suggest that further studies be undertaken to compare S and SR in the acute phase and thereafter in KD patients.
Resumo:
Background: Reliable diagnostic measures for the evaluation of left ventricular systolic performance in the setting of altered myocardial loading characteristics in sickle cell anaemia remains unresolved. Objective: The study was designed to assess left ventricular systolic function in adult sickle cell patients using non-invasive endsystolic stress – end-systolic volume index ratio. Methods: A descriptive cross sectional comparative study was done using 52 patients recruited at the adult sickle cell anaemia clinic of the University of Nigeria Teaching Hospital Enugu. An equal number of age and sex-matched healthy volunteers served as controls. All the participants had haematocrit estimation, haemoglobin electrophoresis, as well as echocardiographic evaluation. Result: The mean age of the patients and controls were 23.93 ± 5.28 (range 18-42) and 24.17 ± 4.39 (range 19 -42) years respectively, (t = 0.262; p= .794). No significant difference was seen in estimate of fractional shortening, and ejection fraction. The cardiac out-put, cardiac index and velocity of circumferential shortening were all significantly increased in the cases compared with the controls. The end systolic stress – end systolic volume index ratio (ESS/ESVI) was significantly lower in cases than controls. There were strong positive correlation between the ejection phase indices (ejection fraction and fractional shortening) and end systolic stress and ESS/ESVI. Conclusion: The study findings suggest the presence of left ventricular systolic dysfunction in adult sickle cell anaemia. This is best detected using the loading-pressures independent force-length relationship expressed in ESS/ESVI ratio.
Resumo:
Purpose: To investigate the effects of coagulation factors and inflammatory cytokines on acute myocardial infarction (AMI) development in patients younger than 60 years. Methods: In this study, 60 patients admitted to The First Affiliated Hospital of Dalian Medical University (Dalian, China) with AMI and 30 other subjects matched with the patients for age and ethnicity but without AMI were enrolled. Blood samples were collected from the AMI patients and the control subjects after a 12-h fast. Subsequently, the levels of coagulation factors (F) II (FII), VII (FVII), VIII (FVIII), fibrinogen (Fg) and von Willebrand factor (vWF) in plasma were analyzed by enzyme-linked immunosorbent assay (ELISA). The protein expression levels of these coagulation factors were determined by Western blot analysis. Inflammatory factors including C-reactive protein (CRP), tumor necrosis factor-α (TNF-α) and interleukin- 6 (IL-6) were also measured by ELISA. Results: FII, FVII, FVIII, Fg and vWF levels in plasm were significantly higher in AMI patients compared with control subjects (p < 0.01). Furthermore, the protein expression levels of FII, FVII, FVIII, Fg and vWF were also significantly up-regulated in AMI patients compared with those in control subjects. Additionally, no significant difference was observed in CRP between AMI patients and control subjects (p > 0.05). However, TNF-α and IL-6 levels in the plasma of AMI patients were significantly higher than those in control subjects (p < 0.05). Conclusion: The results reveal that the pathogenesis of AMI in patients younger than 60 years might be closely related to the high levels of coagulation factors and inflammatory cytokines in the blood.
Resumo:
Purpose: To evaluate the effectiveness of intravenous thrombolysis in combination with nicorandil in the treatment of acute ST-segment elevation myocardial infarction (STEMI). Methods: Patients who developed acute STEMI and underwent intravenous thrombolysis in the hospital were selected and divided into observation group (n = 128) and control group (n = 114). Besides thrombolytic therapy, the observation group was also given 20 mg of nicorandil. The control group received conventional thrombolytic therapy only. Clinical effects and rehabilitation of patients were observed. Results: Cardiac troponin I (cTNI) level of the observation group was 4.0 ± 1.5, 8.3 ± 2.8 and 9.8 ± 3.9 after 4, 12 and 24 h, respectively, which is much lower than 5.8 ± 1.4, 11.4 ± 2.7 and 13.2 ± 4.2 in the control group (p < 0.05). ST-segment resolution of observation group was higher (44 ± 14, 52 ± 17, 69 ± 21 and 80 ± 18) % at different time points, compared with the control group (p < 0.05). The proportion of patients with Curtis-Walker score > 3 points, and ventricular wall motion score (4.70 %; 1.38 ± 0.11) in the observation group were both lower than those of the control group (21.00 %; 1.43 ± 0.15) (p < 0.05). The difference in adverse cardiac events between the observation group (N = 6, 4.70 %) and control group (N = 12, 10.50 %) was not statistically significant (p > 0.05) Conclusion: Combining intravenous thrombolysis with nicorandil therapy can enhance myocardial perfusion level, reduce myocardial damage, improve cardiac function and decrease risk of arrhythmia for acute STEMI patients.