3 resultados para rice (Oryza sativa L.) cultivars

em Bioline International


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Low temperature is one of the main environmental constraints for rice ( Oryza sativa L.) grain production yield. It is known that multi-environment studies play a critical role in the sustainability of rice production across diverse environments. However, there are few studies based on multi-environment studies of rice in temperate climates. The aim was to study the performance of rice plants in cold environments. Four experimental lines and six cultivars were evaluated at three locations during three seasons. The grain yield data were analyzed with ANOVA, mixed models based on the best linear unbiased predictors (BLUPs), and genotype plus Genotype × Environment interaction (GGE) biplot. High genotype contribution (> 25%) was observed in grain yield and the interaction between genotype and locations was not very important. Results also showed that ‘Quila 241319’ was the best experimental line with the highest grain yield (11.3 t ha-1) and grain yield stability across the environments; commercial cultivars were classified as medium grain yield genotypes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: The present study was undertaken towards the development of SSR markers and assessing genetic relationships among 32 date palm ( Phoenix dactylifera L.) representing common cultivars grown in different geographical regions in Saudi Arabia. Results: Ninety-three novel simple sequence repeat markers were developed and screened for their ability to detect polymorphism in date palm. Around 71% of genomic SSRs were dinucleotide, 25% tri, 3% tetra and 1% penta nucleotide motives. Twenty-two primers generated a total of 91 alleles with a mean of 4.14 alleles per locus and 100% polymorphism percentage. A 0.595 average polymorphic information content and 0.662 primer discrimination power values were recorded. The expected and observed heterozygosities were 0.676 and 0.763 respectively. Pair-wise similarity values ranged from 0.06 to 0.89 and the overall cultivars averaged 0.41. The UPGMA cluster analysis recovered by principal coordinate analysis illustrated that cultivars tend to group according to their class of maturity, region of cultivation, and fruit color. Analysis of molecular variations (AMOVA) revealed that genetic variation among and within cultivars were 27% and 73%, respectively according to geographical distribution of cultivars. Conclusions: The developed microsatellite markers are additional values to date palm characterization tools that can be used by researchers in population genetics, cultivar identification as well as genetic resource exploration and management. The tested cultivars exhibited a significant amount of genetic diversity and could be suitable for successful breeding program. Genomic sequences generated from this study are available at the National Center for Biotechnology Information (NCBI), Sequence Read Archive (Accession numbers. LIBGSS_039019).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Weedy rice has been identified as a threat to rice production worldwide. Its phenotypic and genotypic diversity and its potential to compete against rice in all development stages from germination to maturity have resulted in a loss of rice yield and grain quality, which is remarkably high in directseeded rice cultivation. Weedy rice dormancy varies, it has a higher germination rate, and tolerates deeper germination depth compared to rice cultivars. Interactions of weedy rice with cultivars often reflect early vigor, more tillering, nutrient utilization ability for shoot development with respect to rice cultivars even though the latter also show an improvement in shoot development under competition. An exponential relationship has been reported between cultivated rice loss and weedy rice density: this is true for all rice cultivars. The degree of loss is dependent on the competitive ability of the rice cultivar being studied, and each weedy rice biotype also interacts differently. Hence, the need for a comprehensive study of the biology of various weedy rice variants. Difficulties arise in the management of weedy rice due to its physiological, anatomical, and morphological similarities to cultivated rice. The manipulation of the environment to improve cultivated rice production and suppress the emergence of weedy rice variants is important in the management of weedy rice, as well as other cultural practices and use of pesticides. The development of herbicide-resistant rice cultivars is necessary to totally eliminate the weedy rice variants. This review provides information on the competitive ability of weedy rice against rice cultivars; this information is essential to create management options to control weedy rice.