2 resultados para reverse logistics

em Bioline International


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vesiculoviruses (VSV) are zoonotic viruses that cause vesicular stomatitis disease in cattle, horses and pigs, as well as sporadic human cases of acute febrile illness. Therefore, diagnosis of VSV infections by reliable laboratory techniques is important to allow a proper case management and implementation of strategies for the containment of virus spread. We show here a sensitive and reproducible real-time reverse transcriptase polymerase chain reaction (RT-PCR) for detection and quantification of VSV. The assay was evaluated with arthropods and serum samples obtained from horses, cattle and patients with acute febrile disease. The real-time RT-PCR amplified the Piry, Carajas, Alagoas and Indiana Vesiculovirus at a melting temperature 81.02 ± 0.8ºC, and the sensitivity of assay was estimated in 10 RNA copies/mL to the Piry Vesiculovirus. The viral genome has been detected in samples of horses and cattle, but not detected in human sera or arthropods. Thus, this assay allows a preliminary differential diagnosis of VSV infections.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: To investigate the pathogenesis of high fat diet (HFD)-induced hyperlipidemia (HLP) in mice, rats and hamsters and to comparatively evaluate their sensitivity to HFD. Methods: Mice, rats and hamsters were fed with high-fat diet formulation (HFD, n = 8) or a control diet (control, n = 8) for 4 weeks. Changes in body weight, relative liver weight, serum lipid profile, expressions of hepatic marker gene of lipid metabolism and liver morphology were observed in three hyperlipidemic models. Results: Elevated total cholesterol (TC), triglyceride, low density lipoprotein-cholesterol (LDL-C) and high density lipoprotein-cholesterol (HDL-C) levels and body weight were observed in all hyperlipidemic animals (p < 0.05), while hepatic steatosis was manifested in rat and hamster HLP models, and increased hepatic TC level was only seen (p < 0.05) in hamster HLP model. Suppression of HMG-CoA reductase and up-regulation of lipoproteinlipase were observed in all HFD groups. Hepatic gene expression of LDLR, CYP7A1, LCAT, SR-B1, and ApoA I, which are a response to reverse cholesterol transport (RCT), were inhibited by HFD in the three models. Among these models, simultaneous suppression of HMG-CR, LCAT, LDLR and SR-BI and elevated LPL were features of the hamster model. Conclusion: As the results show, impaired RCT and excessive fat accumulation are major contributors to pathogenesis of HFD-induced murine HLP. Thus, the hamster model is more appropriate for hyperlipidemia research.